» Articles » PMID: 15561300

The Efficiency of Muscle Contraction

Overview
Date 2004 Nov 25
PMID 15561300
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

When a muscle contracts and shortens against a load, it performs work. The performance of work is fuelled by the expenditure of metabolic energy, more properly quantified as enthalpy (i.e., heat plus work). The ratio of work performed to enthalpy produced provides one measure of efficiency. However, if the primary interest is in the efficiency of the actomyosin cross-bridges, then the metabolic overheads associated with basal metabolism and excitation-contraction coupling, together with those of subsequent metabolic recovery process, must be subtracted from the total heat and work observed. By comparing the cross-bridge work component of the remainder to the Gibbs free energy of hydrolysis of ATP, a measure of thermodynamic efficiency is achieved. We describe and quantify this partitioning process, providing estimates of the efficiencies of selected steps, while discussing the errors that can arise in the process of quantification. The dependence of efficiency on animal species, fibre-type, temperature, and contractile velocity is considered. The effect of contractile velocity on energetics is further examined using a two-state, Huxley-style, mathematical model of cross-bridge cycling that incorporates filament compliance. Simulations suggest only a modest effect of filament compliance on peak efficiency, but progressively larger gains (vis-à-vis the rigid filament case) as contractile velocity approaches Vmax. This effect is attributed primarily to a reduction in the component of energy loss arising from detachment of cross-bridge heads at non-zero strain.

Citing Articles

Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications.

Li T, Takeuchi S Biophys Rev (Melville). 2025; 6(1):011304.

PMID: 39957912 PMC: 11825180. DOI: 10.1063/5.0246194.


Modeling cardiac contractile cooperativity across species.

Childers M J Gen Physiol. 2025; 157(2).

PMID: 39887987 PMC: 11784582. DOI: 10.1085/jgp.202413722.


The Protective Action of (Rubiaceae) on the Neuromuscular Blockade Induced by (Viperidae: Crotalinae) Venom.

Pilon G, Farias-de-Franca A, Cantuaria N, Silva M, Leao-Torres A, Floriano R Biomed Res Int. 2024; 2024:4714510.

PMID: 39584046 PMC: 11584258. DOI: 10.1155/2024/4714510.


Exploring the Frontiers of Cell Temperature Measurement and Thermogenesis.

Zhu H, Xu H, Zhang Y, Brodsky J, Gablech I, Korabecna M Adv Sci (Weinh). 2024; 12(1):e2402135.

PMID: 39467049 PMC: 11714221. DOI: 10.1002/advs.202402135.


The contractile efficiency of the mantle muscle of European common cuttlefish (Sepia officinalis) during cyclical contractions.

Gladman N, Askew G J Exp Biol. 2024; 227(21).

PMID: 39297692 PMC: 11583979. DOI: 10.1242/jeb.249297.