» Articles » PMID: 15551153

Production and Characterisation of Cell- and Tissue-specific Monoclonal Antibodies for the Flatworm Macrostomum Sp

Overview
Publisher Springer
Date 2004 Nov 20
PMID 15551153
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Monoclonal antibodies (mABs) against various cell types of the basal free-living flatworm Macrostomum sp. were produced by immunising Balb/c mice with cell suspensions of disintegrated animals. We identified 360 positive supernatants with specific staining of various tissues, cell types, patterns or structures. Here we report immunocytochemical characterisation, histological stainings and isotyping of 11 mABs specific for muscle cells (MMu-1, MMu-2, MMu-3, MMu-4), digestive and prostate glands (MDr-1 and MDr-2, MPr-1), epidermal cells (MEp-1), the ventral nerve cord including neuron clusters (MNv-1), gastrodermal cells (MDa-1) and spermatids (MSp-1). Confocal microscopy, histological techniques, electron microscopy and immunoblotting were applied to demonstrate stainings in juveniles, adults, starved or well-fed animals. Considering the current lack of specific markers the obtained mABs will be particularly helpful studying embryonic and postembryonic development, pattern formation, cell differentiation, regeneration and reproductive allocation in Macrostomum sp., and possibly other basal flatworms. The small size, ease of culturing, short generation time, transparency and the basal phylogenetic position specify Macrostomum sp. as a suitable model organism for comparative analyses within Platyhelminthes and to Drosophila and C. elegans.

Citing Articles

Gene Is Required for Spermatogenesis in the Flatworm .

Biryukov M, Dmitrieva A, Vavilova V, Ustyantsev K, Bazarova E, Sukhikh I Int J Mol Sci. 2022; 23(23).

PMID: 36499445 PMC: 9740662. DOI: 10.3390/ijms232315110.


The free-living flatworm .

Wudarski J, Egger B, Ramm S, Scharer L, Ladurner P, Zadesenets K Evodevo. 2020; 11:5.

PMID: 32158530 PMC: 7053086. DOI: 10.1186/s13227-020-00150-1.


Genetic and environmental variation in transcriptional expression of seminal fluid proteins.

Patlar B, Weber M, Ramm S Heredity (Edinb). 2018; 122(5):595-611.

PMID: 30356222 PMC: 6461930. DOI: 10.1038/s41437-018-0160-4.


A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm.

Weber M, Wunderer J, Lengerer B, Pjeta R, Rodrigues M, Scharer L BMC Evol Biol. 2018; 18(1):81.

PMID: 29848299 PMC: 5977470. DOI: 10.1186/s12862-018-1187-0.


Transcriptional signatures of somatic neoblasts and germline cells in .

Grudniewska M, Mouton S, Simanov D, Beltman F, Grelling M, De Mulder K Elife. 2016; 5.

PMID: 27997336 PMC: 5173321. DOI: 10.7554/eLife.20607.


References
1.
Reiter D, Ladurner P, Mair G, Salvenmoser W, Rieger R, Boyer B . Differentiation of the body wall musculature in Macrostomum hystricinum marinum and Hoploplana inquilina (Plathelminthes), as models for muscle development in lower Spiralia. Rouxs Arch Dev Biol. 2017; 205(7-8):410-423. DOI: 10.1007/BF00377221. View

2.
Kubota Y, Morita T, Ito K . New monoclonal antibody (4E9R) identifies mouse neural crest cells. Dev Dyn. 1996; 206(4):368-78. DOI: 10.1002/(SICI)1097-0177(199608)206:4<368::AID-AJA3>3.0.CO;2-G. View

3.
Dunne J, Javois L, Huang L, Bode H . A subset of cells in the nerve net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev Biol. 1985; 109(1):41-53. DOI: 10.1016/0012-1606(85)90344-6. View

4.
Crandall I, Newell P . Changes in cell surface glycoproteins during Dictyostelium development analysed using monoclonal antibodies. Development. 1989; 107(1):87-94. DOI: 10.1242/dev.107.1.87. View

5.
Kobayashi T, Kajiura-Kobayashi H, Nagahama Y . Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech Dev. 2000; 99(1-2):139-42. DOI: 10.1016/s0925-4773(00)00464-0. View