Ichikawa R, Kimura K, Nakamura S, Ohkura S, Matsuyama S
FASEB J. 2024; 38(20):e70116.
PMID: 39425543
PMC: 11580725.
DOI: 10.1096/fj.202401728R.
Sun S, Zhou B, Liu S, Xiu Y, Bilal A, Long H
Front Genet. 2024; 15:1369811.
PMID: 38873111
PMC: 11169787.
DOI: 10.3389/fgene.2024.1369811.
Liu M, Li M, Ruan J, Jia J, Ge C, Cao W
Curr Issues Mol Biol. 2024; 46(4):3713-3728.
PMID: 38666961
PMC: 11048799.
DOI: 10.3390/cimb46040231.
Li J, Ma X, Lin H, Zhao S, Li B, Huang Y
Front Genet. 2024; 15:1375148.
PMID: 38586586
PMC: 10995286.
DOI: 10.3389/fgene.2024.1375148.
Hu X, Yin Z, Zeng Z, Peng Y
Molecules. 2023; 28(13).
PMID: 37446675
PMC: 10343850.
DOI: 10.3390/molecules28135013.
Prediction of potential small molecule-miRNA associations based on heterogeneous network representation learning.
Li J, Lin H, Wang Y, Li Z, Wu B
Front Genet. 2022; 13:1079053.
PMID: 36531225
PMC: 9755196.
DOI: 10.3389/fgene.2022.1079053.
Role of epigallocatechin-3- gallate in the regulation of known and novel microRNAs in breast carcinoma cells.
Banerjee S, Mandal A
Front Genet. 2022; 13:995046.
PMID: 36276982
PMC: 9582282.
DOI: 10.3389/fgene.2022.995046.
Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis.
Chen Y, Zhou J, Wei Z, Cheng Y, Tian G, Quan Y
Front Pharmacol. 2022; 13:940768.
PMID: 36003513
PMC: 9393479.
DOI: 10.3389/fphar.2022.940768.
Application of Bidirectional Generative Adversarial Networks to Predict Potential miRNAs Associated With Diseases.
Xu L, Li X, Yang Q, Tan L, Liu Q, Liu Y
Front Genet. 2022; 13:936823.
PMID: 35903359
PMC: 9314862.
DOI: 10.3389/fgene.2022.936823.
MDMF: Predicting miRNA-Disease Association Based on Matrix Factorization with Disease Similarity Constraint.
Ha J
J Pers Med. 2022; 12(6).
PMID: 35743670
PMC: 9224864.
DOI: 10.3390/jpm12060885.
MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA-Disease Association Prediction.
Ni J, Li L, Wang Y, Ji C, Zheng C
Genes (Basel). 2022; 13(6).
PMID: 35741782
PMC: 9223216.
DOI: 10.3390/genes13061021.
SMMDA: Predicting miRNA-Disease Associations by Incorporating Multiple Similarity Profiles and a Novel Disease Representation.
Ji B, Pan L, Zhou J, You Z, Peng S
Biology (Basel). 2022; 11(5).
PMID: 35625505
PMC: 9138858.
DOI: 10.3390/biology11050777.
A novel information diffusion method based on network consistency for identifying disease related microRNAs.
Chen M, Peng Y, Li A, Li Z, Deng Y, Liu W
RSC Adv. 2022; 8(64):36675-36690.
PMID: 35558942
PMC: 9088870.
DOI: 10.1039/c8ra07519k.
LSGSP: a novel miRNA-disease association prediction model using a Laplacian score of the graphs and space projection federated method.
Zhang Y, Chen M, Cheng X, Chen Z
RSC Adv. 2022; 9(51):29747-29759.
PMID: 35531537
PMC: 9071959.
DOI: 10.1039/c9ra05554a.
The role of microRNAs in COVID-19 with a focus on miR-200c.
Sodagar H, Alipour S, Hassani S, Gholizadeh-Ghaleh Aziz S, Khadem Ansari M, Asghari R
J Circ Biomark. 2022; 11:14-23.
PMID: 35356072
PMC: 8939267.
DOI: 10.33393/jcb.2022.2356.
Identification of miRNA-Small Molecule Associations by Continuous Feature Representation Using Auto-Encoders.
Abdelbaky I, Tayara H, Chong K
Pharmaceutics. 2022; 14(1).
PMID: 35056899
PMC: 8780428.
DOI: 10.3390/pharmaceutics14010003.
Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go.
Sobrero M, Montecucco F, Carbone F
Biomed Res Int. 2022; 2022:4180215.
PMID: 35047634
PMC: 8763471.
DOI: 10.1155/2022/4180215.
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder.
Li L, Wang Y, Ji C, Zheng C, Ni J, Su Y
PLoS Comput Biol. 2021; 17(12):e1009655.
PMID: 34890410
PMC: 8694430.
DOI: 10.1371/journal.pcbi.1009655.
ILPMDA: Predicting miRNA-Disease Association Based on Improved Label Propagation.
Wang Y, Li L, Ji C, Zheng C, Ni J
Front Genet. 2021; 12:743665.
PMID: 34659364
PMC: 8514753.
DOI: 10.3389/fgene.2021.743665.
Prediction of Blood miRNA-mRNA Regulatory Network in Gastric Cancer.
Nooh M, Hakemi-Vala M, Nowroozi J, Fatemi S, Dezfulian M
Rep Biochem Mol Biol. 2021; 10(2):243-256.
PMID: 34604414
PMC: 8480291.
DOI: 10.52547/rbmb.10.2.243.