Veloso S, Rosa M, Diaferia C, Fernandes C
Gels. 2024; 10(8).
PMID: 39195036
PMC: 11354022.
DOI: 10.3390/gels10080507.
Xia M, Ji S, Fu Y, Dai J, Zhang J, Ma X
Gels. 2023; 9(8).
PMID: 37623054
PMC: 10453887.
DOI: 10.3390/gels9080599.
Shy A, Xu J, Kim B, Xu B
ChemSystemsChem. 2023; 5(3).
PMID: 37228589
PMC: 10208383.
DOI: 10.1002/syst.202200041.
Li R, Zhou Q, Tai M, Ashton-Mourney K, Harty M, Rifai A
Gels. 2023; 9(3).
PMID: 36975648
PMC: 10048788.
DOI: 10.3390/gels9030199.
Lachance-Brais C, Rammal M, Asohan J, Katolik A, Luo X, Saliba D
Adv Sci (Weinh). 2023; 10(12):e2205713.
PMID: 36752390
PMC: 10131789.
DOI: 10.1002/advs.202205713.
Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups.
Hamley I
ACS Appl Bio Mater. 2023; 6(2):384-409.
PMID: 36735801
PMC: 9945136.
DOI: 10.1021/acsabm.2c01041.
Antiviral supramolecular polymeric hydrogels by self-assembly of tenofovir-bearing peptide amphiphiles.
Monroe M, Wang H, Anderson C, Qin M, Thio C, Flexner C
Biomater Sci. 2022; 11(2):489-498.
PMID: 36449365
PMC: 9894536.
DOI: 10.1039/d2bm01649d.
Fluorescent supramolecular hydrogels self-assembled from tetraphenylethene (TPE)/single amino acid conjugates.
Chu N, Chakravarthy R, Shih N, Lin Y, Liu Y, Lin J
RSC Adv. 2022; 8(37):20922-20927.
PMID: 35542335
PMC: 9080846.
DOI: 10.1039/c8ra02296h.
Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications.
Das S, Das D
Front Chem. 2021; 9:770102.
PMID: 34869218
PMC: 8635208.
DOI: 10.3389/fchem.2021.770102.
Enhancing Peptide Biomaterials for Biofabrication.
Firipis K, Nisbet D, Franks S, Kapsa R, Pirogova E, Williams R
Polymers (Basel). 2021; 13(16).
PMID: 34451130
PMC: 8400132.
DOI: 10.3390/polym13162590.
Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications.
dOrlye F, Trapiella-Alfonso L, Lescot C, Pinvidic M, Doan B, Varenne A
Molecules. 2021; 26(15).
PMID: 34361740
PMC: 8348434.
DOI: 10.3390/molecules26154587.
Enzymatic Noncovalent Synthesis.
He H, Tan W, Guo J, Yi M, Shy A, Xu B
Chem Rev. 2020; 120(18):9994-10078.
PMID: 32812754
PMC: 7530130.
DOI: 10.1021/acs.chemrev.0c00306.
Amino Acid Based Self-assembled Nanostructures: Complex Structures from Remarkably Simple Building Blocks.
Chakraborty P, Gazit E
ChemNanoMat. 2019; 4(8):730-740.
PMID: 30713827
PMC: 6352958.
DOI: 10.1002/cnma.201800147.
Beyond Covalent Crosslinks: Applications of Supramolecular Gels.
Christoff-Tempesta T, Lew A, Ortony J
Gels. 2019; 4(2).
PMID: 30674816
PMC: 6209248.
DOI: 10.3390/gels4020040.
Supramolecular biofunctional materials.
Zhou J, Li J, Du X, Xu B
Biomaterials. 2017; 129():1-27.
PMID: 28319779
PMC: 5470592.
DOI: 10.1016/j.biomaterials.2017.03.014.
D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.
Wang H, Feng Z, Xu B
Adv Drug Deliv Rev. 2016; 110-111:102-111.
PMID: 27102943
PMC: 5071117.
DOI: 10.1016/j.addr.2016.04.008.
Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
Du X, Zhou J, Shi J, Xu B
Chem Rev. 2015; 115(24):13165-307.
PMID: 26646318
PMC: 4936198.
DOI: 10.1021/acs.chemrev.5b00299.
Enzyme-instructed self-assembly: a multistep process for potential cancer therapy.
Zhou J, Xu B
Bioconjug Chem. 2015; 26(6):987-99.
PMID: 25933032
PMC: 4533114.
DOI: 10.1021/acs.bioconjchem.5b00196.
Enzymatic transformation of phosphate decorated magnetic nanoparticles for selectively sorting and inhibiting cancer cells.
Du X, Zhou J, Wu L, Sun S, Xu B
Bioconjug Chem. 2014; 25(12):2129-33.
PMID: 25431967
PMC: 4275154.
DOI: 10.1021/bc500516g.
Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids.
Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K
Nat Chem. 2014; 6(6):511-8.
PMID: 24848237
DOI: 10.1038/nchem.1937.