» Articles » PMID: 15493555

Uncoupling Proteins and Sleep Deprivation

Overview
Journal Arch Ital Biol
Specialty Biology
Date 2004 Oct 21
PMID 15493555
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

In both humans and animals sleep deprivation (SD) produces an increase in food intake and in energy expenditure (EE). The increase in EE is a core element of the SD syndrome and, in rats, is negatively correlated with survival rate. However, the mechanisms involved are not understood. A large component of resting EE is accounted for by the mitochondrial proton leak, which is mediated by uncoupling proteins (UCPs). We measured UCP2, UCP3, and UCP5 mRNA levels in rats during the spontaneous sleep/waking cycle and after short (8 hours) and long (7 days) SD. During spontaneous sleep and waking there was no change in the level of mitochondrial uncoupling as measured by UCPs expression, either in the brain or in peripheral tissues. During SD, by contrast, UCP3 expression in skeletal muscle was elevated, but the increase was similar, compared to sleep, after both short-term and long-term SD. UCP2 expression, on the other hand, was strongly increased in the liver and skeletal muscle of long-term sleep deprived animals and much less so, or not at all, in yoked controls or in rats that lost only 8 hours of sleep. Since the skeletal muscle is the largest tissue in the body, an elevated muscular expression of UCP2 is likely to affect the overall resting EE and may thus contribute to its increase after SD.

Citing Articles

Signals of energy availability in sleep: consequences of a fat-based metabolism.

OHearn L Front Nutr. 2024; 11:1397185.

PMID: 39267859 PMC: 11390529. DOI: 10.3389/fnut.2024.1397185.


Effects of Chronic Sleep Restriction on Transcriptional Sirtuin 1 Signaling Regulation in Male Mice White Adipose Tissue.

Rendine M, Cocci P, de Vivo L, Bellesi M, Palermo F Curr Issues Mol Biol. 2024; 46(3):2144-2154.

PMID: 38534754 PMC: 10969409. DOI: 10.3390/cimb46030138.


Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles.

Richardson R, Mailloux R Antioxidants (Basel). 2023; 12(3).

PMID: 36978924 PMC: 10045244. DOI: 10.3390/antiox12030674.


Clock Gene Dysregulation Induced by Chronic ER Stress Disrupts β-cell Function.

Ohta Y, Taguchi A, Matsumura T, Nakabayashi H, Akiyama M, Yamamoto K EBioMedicine. 2017; 18:146-156.

PMID: 28389215 PMC: 5405175. DOI: 10.1016/j.ebiom.2017.03.040.


A review of sleep deprivation studies evaluating the brain transcriptome.

Elliott A, Huber J, OCallaghan J, Rosen C, Miller D Springerplus. 2015; 3:728.

PMID: 25932362 PMC: 4409616. DOI: 10.1186/2193-1801-3-728.