» Articles » PMID: 15475843

Biomechanics of Locked Plates and Screws

Overview
Journal J Orthop Trauma
Date 2004 Oct 12
PMID 15475843
Citations 154
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: To review the biomechanical principles that guide fracture fixation with plates and screws; specifically to compare and contrast the function and roles of conventional unlocked plates to locked plates in fracture fixation. We review basic plate and screw function, discuss the design rationale for the new implants, and examine the biomechanical evidence that supports the use of such implants.

Data Sources: Systematic review of the per reviewed English language orthopaedic literature listed on PubMed (National Library of Medicine online service).

Study Selection: Papers selected for this review were drawn from peer review orthopaedic journals. All selected papers specifically discussed plate and screw biomechanics with regard to fracture fixation. PubMed search terms were: plates and screws, biomechanics, locked plates, PC-Fix, LISS, LCP, MIPO, and fracture fixation.

Data Synthesis: The following topics are discussed: plate and screw function-neutralization plates and buttress plates, bridge plates; fracture stability-specifically how this effects gap strain and fracture union, conventional plate biomechanics, and locking plate biomechanics.

Conclusions: Locked plates and conventional plates rely on completely different mechanical principles to provide fracture fixation and in so doing they provide different biological environments for healing. Locked plates may increasingly be indicated for indirect fracture reduction, diaphyseal/metaphyseal fractures in osteoporotic bone, bridging severely comminuted fractures, and the plating of fractures where anatomical constraints prevent plating on the tension side of the bone. Conventional plates may continue to be the fixation method of choice for periarticular fractures which demand perfect anatomical reduction and to certain types of nonunions which require increased stability for union.

Citing Articles

A biomechanical study of locking spongious screws and failure rates are higher than expected in plate fixation.

Parmaksizoglu F, Cetin O, Kilic S, Ince Y Sci Rep. 2025; 15(1):2728.

PMID: 39837929 PMC: 11751164. DOI: 10.1038/s41598-025-87045-0.


From Lab to Limb: Unraveling Translational Insights and Significance of Animal Models in Lower Extremity Transplantation.

Kulahci Y, Kodali N, Demir Z, Dirican O, Sazoglu B, Janarthanan R JPRAS Open. 2025; 43():232-244.

PMID: 39811586 PMC: 11730959. DOI: 10.1016/j.jpra.2024.11.018.


Cancellous Grafting Versus Corticocancellous Graft With Volar Locked Plating for Scaphoid Waist Fracture Nonunion: An Evaluation of Early Bony Bridging.

Stoltz M, Gainer J, Nyland J, Fehrenbacher V, Gupta A, Robinson L Hand (N Y). 2024; :15589447241308598.

PMID: 39727087 PMC: 11672361. DOI: 10.1177/15589447241308598.


Early resistance rehabilitation improves functional regeneration following segmental bone defect injury.

Williams K, Harrer J, LaBelle S, Leguineche K, Kaiser J, Karipott S NPJ Regen Med. 2024; 9(1):38.

PMID: 39668145 PMC: 11638264. DOI: 10.1038/s41536-024-00377-9.


Clinical results of locking compression plate external fixation for open ulnar and radial shaft fractures.

Sun K, Sun Y Int J Surg Case Rep. 2024; 112:108943.

PMID: 39491407 PMC: 10667766. DOI: 10.1016/j.ijscr.2023.108943.