» Articles » PMID: 15455257

An Efficient Transformation System for Chickpea (Cicer Arietinum L.)

Overview
Journal Plant Cell Rep
Publisher Springer
Date 2004 Sep 30
PMID 15455257
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

A reproducible and efficient transformation method was developed for Desi and Kabuli chickpeas (Cicer arietinum L.) using germinated seedlings as sources of explants. Slices derived from plumules were the most efficient at generating transformed shoots. The AGL1 Agrobacterium-treated explants were first incubated on thidiazuron-containing media, then selected using phosphinothricin. Resistant shoots were successfully transferred to soil either by grafting or in vitro rooting. In experiments each taking 4-9 months, a total of 41 confirmed transformed lines were created using embryo axis slices as source explants, giving a transformation frequency of 5.1%. Southern analysis and histochemical and leaf painting assays demonstrated integration and expression of the transgenes in the initial transformants and two generations of progeny.

Citing Articles

Development of an Agrobacterium-delivered codon-optimized CRISPR/Cas9 system for chickpea genome editing.

Gupta S, Vishwakarma N, Malakar P, Vanspati P, Sharma N, Chattopadhyay D Protoplasma. 2023; 260(5):1437-1451.

PMID: 37131068 DOI: 10.1007/s00709-023-01856-4.


A Comprehensive Review on Chickpea ( L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience.

Arriagada O, Cacciuttolo F, Cabeza R, Carrasco B, Schwember A Int J Mol Sci. 2022; 23(12).

PMID: 35743237 PMC: 9223724. DOI: 10.3390/ijms23126794.


Somatic embryogenesis and β-glucuronidase transformation in chickpea (Cicer arietinum cv. Bivanich).

Amani M, Zebarjadi A, Kahrizi D, Ercisli S Mol Biol Rep. 2022; 49(12):11219-11227.

PMID: 35501539 DOI: 10.1007/s11033-022-07450-w.


Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security.

Chapman M, He Y, Zhou M New Phytol. 2022; 234(5):1583-1597.

PMID: 35318683 PMC: 9994440. DOI: 10.1111/nph.18021.


Genetic transformation of legumes: an update.

Choudhury A, Rajam M Plant Cell Rep. 2021; 40(10):1813-1830.

PMID: 34230986 DOI: 10.1007/s00299-021-02749-7.


References
1.
Kar S, Johnson T, Nayak P, Sen S . Efficient transgenic plant regeneration throughAgrobacterium-mediated transformation of Chickpea (Cicer arietinum L.). Plant Cell Rep. 2013; 16(1-2):32-7. DOI: 10.1007/BF01275444. View

2.
Schroeder H, Schotz A, Wardley-Richardson T, Spencer D, Higgins T . Transformation and Regeneration of Two Cultivars of Pea (Pisum sativum L.). Plant Physiol. 1993; 101(3):751-757. PMC: 158687. DOI: 10.1104/pp.101.3.751. View

3.
Tewari-Singh N, Sen J, Kiesecker H, Reddy V, Jacobsen H, Guha-Mukherjee S . Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Rep. 2004; 22(8):576-83. DOI: 10.1007/s00299-003-0730-6. View

4.
Stam M, de Bruin R, van Blokland R, Van der Hoorn R, Mol J, Kooter J . Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci. Plant J. 2000; 21(1):27-42. DOI: 10.1046/j.1365-313x.2000.00650.x. View

5.
Dower W, Miller J, Ragsdale C . High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988; 16(13):6127-45. PMC: 336852. DOI: 10.1093/nar/16.13.6127. View