Baytshtok V, DiMattia M, Lima C
bioRxiv. 2025; .
PMID: 39763778
PMC: 11703149.
DOI: 10.1101/2024.10.04.616749.
Wang W, Matunis M
Cells. 2024; 13(1).
PMID: 38201212
PMC: 10778024.
DOI: 10.3390/cells13010008.
Alfaro A, Dittner C, Becker J, Loft A, Mhamane A, Maida A
EMBO Rep. 2023; 24(10):e55981.
PMID: 37560809
PMC: 10561358.
DOI: 10.15252/embr.202255981.
Xiao H, Zhou H, Zeng G, Mao Z, Zeng J, Gao A
J Mol Med (Berl). 2022; 100(11):1511-1538.
PMID: 36163375
DOI: 10.1007/s00109-022-02258-4.
Peter J, Magnussen H, DaRosa P, Millrine D, Matthews S, Lamoliatte F
EMBO J. 2022; 41(21):e111015.
PMID: 36121123
PMC: 9627666.
DOI: 10.15252/embj.2022111015.
Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases.
Lara-Urena N, Jafari V, Garcia-Dominguez M
Int J Mol Sci. 2022; 23(14).
PMID: 35887358
PMC: 9316396.
DOI: 10.3390/ijms23148012.
SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases.
Sun Y, Nitiss J, Pommier Y
Front Mol Biosci. 2022; 9:871161.
PMID: 35463961
PMC: 9019546.
DOI: 10.3389/fmolb.2022.871161.
Structural Diversity of Ubiquitin E3 Ligase.
Toma-Fukai S, Shimizu T
Molecules. 2021; 26(21).
PMID: 34771091
PMC: 8586995.
DOI: 10.3390/molecules26216682.
Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome.
Raices M, DAngelo M
Cold Spring Harb Perspect Biol. 2021; 14(3).
PMID: 34312247
PMC: 8789946.
DOI: 10.1101/cshperspect.a040691.
The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis.
Ryu H, Sun X, Chen Y, Li Y, Wang X, Dai R
EMBO Rep. 2021; 22(6):e50684.
PMID: 33852194
PMC: 8183414.
DOI: 10.15252/embr.202050684.
Stress-induced nuclear condensation of NELF drives transcriptional downregulation.
Rawat P, Boehning M, Hummel B, Aprile-Garcia F, Pandit A, Eisenhardt N
Mol Cell. 2021; 81(5):1013-1026.e11.
PMID: 33548202
PMC: 7939545.
DOI: 10.1016/j.molcel.2021.01.016.
Heat shock transcription factor 1 is SUMOylated in the activated trimeric state.
Kmiecik S, Drzewicka K, Melchior F, Mayer M
J Biol Chem. 2021; 296:100324.
PMID: 33493517
PMC: 7949154.
DOI: 10.1016/j.jbc.2021.100324.
Concomitant constitutive LNK and NFE2 mutation with loss of sumoylation in a case of hereditary thrombocythemia.
Bockelmann L, Basu T, Grunder A, Wang W, Breucker J, Kaiser S
Haematologica. 2020; 106(4):1158-1162.
PMID: 32554556
PMC: 8018143.
DOI: 10.3324/haematol.2020.246587.
Nucleoporins in cardiovascular disease.
Burdine R, Preston C, Leonard R, Bradley T, Faustino R
J Mol Cell Cardiol. 2020; 141:43-52.
PMID: 32209327
PMC: 7394472.
DOI: 10.1016/j.yjmcc.2020.02.010.
A genome-wide screen of Epstein-Barr virus proteins that modulate host SUMOylation identifies a SUMO E3 ligase conserved in herpesviruses.
De La Cruz-Herrera C, Shire K, Siddiqi U, Frappier L
PLoS Pathog. 2018; 14(7):e1007176.
PMID: 29979787
PMC: 6051671.
DOI: 10.1371/journal.ppat.1007176.
Fifty shades of SUMO: its role in immunity and at the fulcrum of the growth-defence balance.
Verma V, Croley F, Sadanandom A
Mol Plant Pathol. 2017; 19(6):1537-1544.
PMID: 29024335
PMC: 6637990.
DOI: 10.1111/mpp.12625.
Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism.
Cappadocia L, Lima C
Chem Rev. 2017; 118(3):889-918.
PMID: 28234446
PMC: 5815371.
DOI: 10.1021/acs.chemrev.6b00737.
Nup358 binds to AGO proteins through its SUMO-interacting motifs and promotes the association of target mRNA with miRISC.
Sahoo M, Gaikwad S, Khuperkar D, Ashok M, Helen M, Yadav S
EMBO Rep. 2017; 18(2):241-263.
PMID: 28039207
PMC: 5286382.
DOI: 10.15252/embr.201642386.
Regulation of aPKC activity by Nup358 dependent SUMO modification.
Yadav S, Magre I, Singh A, Khuperkar D, Joseph J
Sci Rep. 2016; 6:34100.
PMID: 27682244
PMC: 5040961.
DOI: 10.1038/srep34100.
Redox regulation of SUMO enzymes is required for ATM activity and survival in oxidative stress.
Stankovic-Valentin N, Drzewicka K, Konig C, Schiebel E, Melchior F
EMBO J. 2016; 35(12):1312-29.
PMID: 27174643
PMC: 4867669.
DOI: 10.15252/embj.201593404.