Doknic I, Mitrovic M, Bukumiric Z, Virijevic M, Pantic N, Sabljic N
Bioengineering (Basel). 2025; 12(1).
PMID: 39851337
PMC: 11760474.
DOI: 10.3390/bioengineering12010063.
Bernstorff M, Hansen L, Olesen K, Danielsen A, Ostergaard S
Eur Psychiatry. 2025; 68(1):e12.
PMID: 39773769
PMC: 11822960.
DOI: 10.1192/j.eurpsy.2025.1.
Perfalk E, Damgaard J, Bernstorff M, Hansen L, Danielsen A, Ostergaard S
Psychol Med. 2024; :1-14.
PMID: 39552381
PMC: 11650168.
DOI: 10.1017/S0033291724002642.
Park J, Lee K, Heo J, Ahn K
Sci Rep. 2024; 14(1):24664.
PMID: 39433922
PMC: 11494142.
DOI: 10.1038/s41598-024-75684-8.
Zhou H, Fang C, Pan Y
JMIR Hum Factors. 2024; 11:e62866.
PMID: 39212592
PMC: 11378692.
DOI: 10.2196/62866.
Development and validation of a machine learning model for prediction of type 2 diabetes in patients with mental illness.
Bernstorff M, Hansen L, Enevoldsen K, Damgaard J, Haestrup F, Perfalk E
Acta Psychiatr Scand. 2024; 151(3):245-258.
PMID: 38575118
PMC: 11787919.
DOI: 10.1111/acps.13687.
Machine learning in mental health and its relationship with epidemiological practice.
DelPozo-Banos M, Stewart R, John A
Front Psychiatry. 2024; 15:1347100.
PMID: 38528983
PMC: 10961376.
DOI: 10.3389/fpsyt.2024.1347100.
Machine learning predictive modelling for identification of predictors of acute respiratory infection and diarrhoea in Uganda's rural and urban settings.
Kananura R
PLOS Glob Public Health. 2023; 2(5):e0000430.
PMID: 36962243
PMC: 10021828.
DOI: 10.1371/journal.pgph.0000430.
A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population.
Chowdhury M, Leung A, Walker R, Sikdar K, OBeirne M, Quan H
Sci Rep. 2023; 13(1):13.
PMID: 36593280
PMC: 9807553.
DOI: 10.1038/s41598-022-27264-x.
Longitudinal Data to Enhance Dynamic Stroke Risk Prediction.
Zheng W, Chen Y, Sawan M
Healthcare (Basel). 2022; 10(11).
PMID: 36360476
PMC: 9691140.
DOI: 10.3390/healthcare10112134.
Machine Learning in Nutrition Research.
Kirk D, Kok E, Tufano M, Tekinerdogan B, Feskens E, Camps G
Adv Nutr. 2022; 13(6):2573-2589.
PMID: 36166846
PMC: 9776646.
DOI: 10.1093/advances/nmac103.
Predicting Sepsis Mortality in a Population-Based National Database: Machine Learning Approach.
Park J, Hsu T, Hu J, Chen C, Hsu W, Lee M
J Med Internet Res. 2022; 24(4):e29982.
PMID: 35416785
PMC: 9047761.
DOI: 10.2196/29982.
Artificial intelligence in obstetrics.
Ahn K, Lee K
Obstet Gynecol Sci. 2021; 65(2):113-124.
PMID: 34905872
PMC: 8942755.
DOI: 10.5468/ogs.21234.
Feature Importance of Acute Rejection among Black Kidney Transplant Recipients by Utilizing Random Forest Analysis: An Analysis of the UNOS Database.
Thongprayoon C, Jadlowiec C, Leeaphorn N, Bruminhent J, Acharya P, Acharya C
Medicines (Basel). 2021; 8(11).
PMID: 34822363
PMC: 8621202.
DOI: 10.3390/medicines8110066.
Use of Machine Learning and Artificial Intelligence Methods in Geriatric Mental Health Research Involving Electronic Health Record or Administrative Claims Data: A Systematic Review.
Chowdhury M, Cervantes E, Chan W, Seitz D
Front Psychiatry. 2021; 12:738466.
PMID: 34616322
PMC: 8488098.
DOI: 10.3389/fpsyt.2021.738466.
Cervical cancer risk and access: Utilizing three statistical tools to assess Haitian women in South Florida.
Moise R, Balise R, Ragin C, Kobetz E
PLoS One. 2021; 16(7):e0254089.
PMID: 34228766
PMC: 8259954.
DOI: 10.1371/journal.pone.0254089.
Survival prediction models since liver transplantation - comparisons between Cox models and machine learning techniques.
Kantidakis G, Putter H, Lancia C, de Boer J, Braat A, Fiocco M
BMC Med Res Methodol. 2020; 20(1):277.
PMID: 33198650
PMC: 7667810.
DOI: 10.1186/s12874-020-01153-1.
Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data.
Mandair D, Tiwari P, Simon S, Colborn K, Rosenberg M
BMC Med Inform Decis Mak. 2020; 20(1):252.
PMID: 33008368
PMC: 7532582.
DOI: 10.1186/s12911-020-01268-x.
Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth.
Lee K, Ahn K
Diagnostics (Basel). 2020; 10(9).
PMID: 32971981
PMC: 7555184.
DOI: 10.3390/diagnostics10090733.
Using a genetic algorithm to derive a highly predictive and context-specific frailty index.
Zucchelli A, Marengoni A, Rizzuto D, Calderon-Larranaga A, Zucchelli M, Bernabei R
Aging (Albany NY). 2020; 12(8):7561-7575.
PMID: 32343260
PMC: 7202492.
DOI: 10.18632/aging.103118.