» Articles » PMID: 15360859

Ontology-based Error Detection in SNOMED-CT

Overview
Publisher IOS Press
Date 2004 Sep 14
PMID 15360859
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Quality assurance in large terminologies is a difficult issue. We present two algorithms that can help terminology developers and users to identify potential areas of improvement. We demonstrate the methodology by applying the algorithms to one of the most popular terminologies, SNOMED-CT. Analysis of the results provides evidence for the thesis that both formal logical and linguistic tools should be used in the development and quality-assurance process of large terminologies.

Citing Articles

Overlapping Complex Concepts Have More Commission Errors, Especially in Intensive Terminology Auditing.

Zheng L, Liu H, Perl Y, Geller J, Ochs C, Case J AMIA Annu Symp Proc. 2019; 2018:1157-1166.

PMID: 30815158 PMC: 6371375.


Analyzing structural changes in SNOMED CT's Bacterial infectious diseases using a visual semantic delta.

Ochs C, Case J, Perl Y J Biomed Inform. 2017; 67:101-116.

PMID: 28215561 PMC: 5407457. DOI: 10.1016/j.jbi.2017.02.006.


TNM-O: ontology support for staging of malignant tumours.

Boeker M, Franca F, Bronsert P, Schulz S J Biomed Semantics. 2016; 7(1):64.

PMID: 27842575 PMC: 5109740. DOI: 10.1186/s13326-016-0106-9.


Scalable quality assurance for large SNOMED CT hierarchies using subject-based subtaxonomies.

Ochs C, Geller J, Perl Y, Chen Y, Xu J, Min H J Am Med Inform Assoc. 2014; 22(3):507-18.

PMID: 25336594 PMC: 6283060. DOI: 10.1136/amiajnl-2014-003151.


From concept representations to ontologies: a paradigm shift in health informatics?.

Schulz S, Balkanyi L, Cornet R, Bodenreider O Healthc Inform Res. 2014; 19(4):235-42.

PMID: 24523987 PMC: 3920035. DOI: 10.4258/hir.2013.19.4.235.