Models and Inference Methods for Clinical Systems: a Principled Approach
Overview
Authors
Affiliations
Previous papers have argued for the existence of three different models in many clinical information systems--for the medical record, for inference in guidelines, and for concepts and re-usable facts. This paper presents a principled approach to deciding which information belongs in each model based on the nature of the queries or inference to be performed: necessary or contingent, open or closed world, algorithmic vs heuristic. It then discusses an important class of systems--"ontologically indexed knowledge bases"--and issues of metadata within this framework.
Campbell W, Karlsson D, Vreeman D, Lazenby A, Talmon G, Campbell J J Am Med Inform Assoc. 2017; 25(3):259-266.
PMID: 29024958 PMC: 7378880. DOI: 10.1093/jamia/ocx097.
Lessons learned in detailed clinical modeling at Intermountain Healthcare.
Oniki T, Coyle J, Parker C, Huff S J Am Med Inform Assoc. 2014; 21(6):1076-81.
PMID: 24993546 PMC: 4215059. DOI: 10.1136/amiajnl-2014-002875.
Hendel R, Bozkurt B, Fonarow G, Jacobs J, Lichtman J, Smith E J Am Coll Cardiol. 2013; 63(21):2323-34.
PMID: 24246166 PMC: 5656236. DOI: 10.1016/j.jacc.2013.11.006.
Evaluating the effectiveness of modeling principles for data models.
Torres-Urquidy M, Acharya A, Hernandez-Cott P, Misner J, Schleyer T Stud Health Technol Inform. 2009; 143:525-33.
PMID: 19380987 PMC: 2736630.
Dykes P, Kim H, Goldsmith D, Choi J, Esumi K, Goldberg H J Am Med Inform Assoc. 2008; 16(2):238-46.
PMID: 19074298 PMC: 2649316. DOI: 10.1197/jamia.M2956.