» Articles » PMID: 15347790

Induction and Functional Analysis of Two Reduced Nicotinamide Adenine Dinucleotide Phosphate-dependent Glutathione Peroxidase-like Proteins in Synechocystis PCC 6803 During the Progression of Oxidative Stress

Overview
Journal Plant Physiol
Specialty Physiology
Date 2004 Sep 7
PMID 15347790
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Synechocystis PCC 6803 contains two types of glutathione peroxidase-like proteins (GPX-1 and GPX-2) that utilize NADPH but not reduced glutathione and unsaturated fatty acid hydroperoxides or alkyl hydroperoxides. The steady-state transcript level of gpx-1 gradually increased under oxidative stress conditions imposed by high light intensity, high salinity, or application of methylviologen or t-butyl hydroperoxide in the wild-type and GPX-2 knock-out mutant (gpx-2Delta) cells. To examine the ability of GPX-1, GPX-2, and thioredoxin peroxidase to scavenge lipid hydroperoxide in vivo, we measured the photosynthetic evolution of O(2) and the level of lipid peroxidation in the wild-type and each type of mutant cell after the application of t-butyl hydroperoxide or H(2)O(2). The data reported here indicate that GPX-1 and GPX-2 are essential for the removal of lipid hydroperoxides under normal and stress conditions, leading to the protection of membrane integrity.

Citing Articles

Disrupted H synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803.

Sukkasam N, Kaewbai-Ngam J, Leksingto J, In-Na P, Nootong K, Incharoensakdi A Plant Mol Biol. 2024; 114(4):87.

PMID: 39023834 DOI: 10.1007/s11103-024-01484-3.


Transcriptional changes of proteins of the thioredoxin and glutathione systems in Acanthamoeba spp. under oxidative stress - an RNA approach.

Kohsler M, Leitsch D, Loufouma Mbouaka A, Wekerle M, Walochnik J Parasite. 2022; 29:24.

PMID: 35532265 PMC: 9083255. DOI: 10.1051/parasite/2022025.


Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Strain WH7803.

Guyet U, Nguyen N, Dore H, Haguait J, Pittera J, Conan M Front Microbiol. 2020; 11:1707.

PMID: 32793165 PMC: 7393227. DOI: 10.3389/fmicb.2020.01707.


Translating Divergent Environmental Stresses into a Common Proteome Response through the Histidine Kinase 33 (Hik33) in a Model Cyanobacterium.

Ge H, Fang L, Huang X, Wang J, Chen W, Liu Y Mol Cell Proteomics. 2017; 16(7):1258-1274.

PMID: 28668777 PMC: 5500759. DOI: 10.1074/mcp.M116.068080.


The importance of Arabidopsis glutathione peroxidase 8 for protecting Arabidopsis plant and E. coli cells against oxidative stress.

Gaber A GM Crops Food. 2013; 5(1):20-6.

PMID: 24217216 PMC: 5033170. DOI: 10.4161/gmcr.26979.


References
1.
Yamamoto H, Miyake C, Dietz K, Tomizawa K, Murata N, Yokota A . Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 1999; 447(2-3):269-73. DOI: 10.1016/s0014-5793(99)00309-9. View

2.
Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A . Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem. 1999; 274(38):27002-9. DOI: 10.1074/jbc.274.38.27002. View

3.
Churin Y, Schilling S, Borner T . A gene family encoding glutathione peroxidase homologues in Hordeum vulgare (barley). FEBS Lett. 1999; 459(1):33-8. DOI: 10.1016/s0014-5793(99)01208-9. View

4.
Jakopitsch C, Ruker F, Regelsberger G, Dockal M, Peschek G, Obinger C . Catalase-peroxidase from the cyanobacterium Synechocystis PCC 6803: cloning, overexpression in Escherichia coli, and kinetic characterization. Biol Chem. 1999; 380(9):1087-96. DOI: 10.1515/BC.1999.135. View

5.
Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S . Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol. 2000; 123(1):223-34. PMC: 58996. DOI: 10.1104/pp.123.1.223. View