Classification of Brain Tumours Using Short Echo Time 1H MR Spectra
Overview
Authors
Affiliations
The purpose was to objectively compare the application of several techniques and the use of several input features for brain tumour classification using Magnetic Resonance Spectroscopy (MRS). Short echo time 1H MRS signals from patients with glioblastomas (n = 87), meningiomas (n = 57), metastases (n = 39), and astrocytomas grade II (n = 22) were provided by six centres in the European Union funded INTERPRET project. Linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel and LS-SVM with radial basis function kernel were applied and evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of binary classifiers, while the percentage of correct classifications was used to evaluate the multiclass classifiers. The influence of several factors on the classification performance has been tested: L2- vs. water normalization, magnitude vs. real spectra and baseline correction. The effect of input feature reduction was also investigated by using only the selected frequency regions containing the most discriminatory information, and peak integrated values. Using L2-normalized complete spectra the automated binary classifiers reached a mean test AUC of more than 0.95, except for glioblastomas vs. metastases. Similar results were obtained for all classification techniques and input features except for water normalized spectra, where classification performance was lower. This indicates that data acquisition and processing can be simplified for classification purposes, excluding the need for separate water signal acquisition, baseline correction or phasing.
Prediction of individual weight loss using supervised learning: findings from the CALERIE 2 study.
Glasbrenner C, Hochsmann C, Pieper C, Wasserfurth P, Dorling J, Martin C Am J Clin Nutr. 2024; 120(5):1233-1244.
PMID: 39270937 PMC: 11600119. DOI: 10.1016/j.ajcnut.2024.09.003.
Advances in Neuro-Oncological Imaging: An Update on Diagnostic Approach to Brain Tumors.
Sabeghi P, Zarand P, Zargham S, Golestany B, Shariat A, Chang M Cancers (Basel). 2024; 16(3).
PMID: 38339327 PMC: 10854543. DOI: 10.3390/cancers16030576.
Hung N, Dung L, Vi N, Anh N, Hong Phuong L, Hieu N J Clin Imaging Sci. 2023; 13:19.
PMID: 37559877 PMC: 10408633. DOI: 10.25259/JCIS_49_2023.
Hellstrom J, Romanos Zapata R, Libard S, Wikstrom J, Ortiz-Nieto F, Alafuzoff I PLoS One. 2018; 13(11):e0207336.
PMID: 30440005 PMC: 6237369. DOI: 10.1371/journal.pone.0207336.
Manias K, Harris L, Davies N, Natarajan K, MacPherson L, Foster K Pediatr Radiol. 2018; 48(11):1630-1641.
PMID: 30062569 PMC: 6153873. DOI: 10.1007/s00247-018-4182-0.