» Articles » PMID: 15319511

Online Retrieval, Processing, and Visualization of Primate Connectivity Data from the CoCoMac Database

Overview
Date 2004 Aug 21
PMID 15319511
Citations 118
Authors
Affiliations
Soon will be listed here.
Abstract

Connectivity is the key to understanding distributed and cooperative brain functions. Detailed and comprehensive data on large-scale connectivity between primate brain areas have been collated systematically from published reports of experimental tracing studies. Although the majority of the data have been made easily available for online retrieval, the multiplicity of brain maps and the precise requirements of anatomical naming limit the intuitive access to the data. The quality of data retrieval can be improved by observing a small set of conventions in data representation. Standardized interfaces open up further opportunities for automated search and retrieval, for flexible visualization of data, and for interoperability with other databases. This article provides a discussion and examples in text and image of the capabilities of the online interface to the CoCoMac database of primate connectivity. These serve to point out sources of potential confusion and failure, and to demonstrate the automated interfacing with other neuroinformatics resources that facilitate selection and processing of connectivity data, for example, for computational modelling and interpretation of functional imaging studies.

Citing Articles

The role of structural connectivity on brain function through a Markov model of signal transmission.

Razban R, Banerjee A, Mujica-Parodi L, Bahar I bioRxiv. 2025; .

PMID: 39990492 PMC: 11844399. DOI: 10.1101/2024.11.10.622842.


Twenty Years of Neuroinformatics: A Bibliometric Analysis.

Guillen-Pujadas M, Alaminos D, Vizuete-Luciano E, Merigo J, Van Horn J Neuroinformatics. 2025; 23(1):7.

PMID: 39812741 PMC: 11735507. DOI: 10.1007/s12021-024-09712-3.


Effects of packetization on communication dynamics in brain networks.

Fukushima M, Leibnitz K Netw Neurosci. 2024; 8(2):418-436.

PMID: 38952819 PMC: 11142457. DOI: 10.1162/netn_a_00360.


A hierarchy index for networks in the brain reveals a complex entangled organizational structure.

Pathak A, Menon S, Sinha S Proc Natl Acad Sci U S A. 2024; 121(27):e2314291121.

PMID: 38923990 PMC: 11228506. DOI: 10.1073/pnas.2314291121.


Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice.

Griffa A, Mach M, Dedelley J, Gutierrez-Barragan D, Gozzi A, Allali G Nat Commun. 2023; 14(1):8216.

PMID: 38081838 PMC: 10713651. DOI: 10.1038/s41467-023-43971-z.


References
1.
Bowden D, Dubach M . NeuroNames 2002. Neuroinformatics. 2004; 1(1):43-59. DOI: 10.1385/NI:1:1:043. View

2.
Cannon R, Hasselmo M, Koene R . From biophysics to behavior: Catacomb2 and the design of biologically-plausible models for spatial navigation. Neuroinformatics. 2004; 1(1):3-42. DOI: 10.1385/NI:1:1:003. View

3.
Young M . The organization of neural systems in the primate cerebral cortex. Proc Biol Sci. 1993; 252(1333):13-8. DOI: 10.1098/rspb.1993.0040. View

4.
Felleman D, Van Essen D . Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991; 1(1):1-47. DOI: 10.1093/cercor/1.1.1-a. View

5.
Friston K, Harrison L, Penny W . Dynamic causal modelling. Neuroimage. 2003; 19(4):1273-302. DOI: 10.1016/s1053-8119(03)00202-7. View