» Articles » PMID: 15252968

A Mosaic Pattern Characterizes the Evolution of the Avian Brain

Overview
Journal Proc Biol Sci
Specialty Biology
Date 2004 Jul 16
PMID 15252968
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Diversity in vertebrate brain size and composition is thought to arise from either developmental constraints that cause coordinated changes between brain regions or a mosaic model, whereby changes in individual brain regions are independent of changes in other brain regions. These two mechanisms were tested in birds using multiple regression analyses. Across 13 orders, significant correlations were present between some brain regions, but not all. Most of the correlated changes reflect the connectivity between different brain components, such that regions with the most interconnections are correlated with one another but not other brain regions. Whether mosaic changes are characteristic of brain regions or systems in birds, however, to our knowledge, remains to be investigated.

Citing Articles

Avian telencephalon and cerebellum volumes can be accurately estimated from digital brain endocasts.

Keirnan A, Cunha F, Citron S, Prideaux G, Iwaniuk A, Weisbecker V Biol Lett. 2025; 21(1):20240596.

PMID: 39837487 PMC: 11750377. DOI: 10.1098/rsbl.2024.0596.


Brain shapes of large-bodied, flightless ratites (Aves: Palaeognathae) emerge through distinct developmental allometries.

Forcellati M, Green T, Watanabe A R Soc Open Sci. 2024; 11(9):240765.

PMID: 39263457 PMC: 11387061. DOI: 10.1098/rsos.240765.


Endocranial development in non-avian dinosaurs reveals an ontogenetic brain trajectory distinct from extant archosaurs.

King L, Zhao Q, Dufeau D, Kawabe S, Witmer L, Zhou C Nat Commun. 2024; 15(1):7415.

PMID: 39198439 PMC: 11358377. DOI: 10.1038/s41467-024-51627-9.


Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda).

Yu C, Watanabe A, Qin Z, Logan King J, Witmer L, Ma Q Commun Biol. 2024; 7(1):168.

PMID: 38341492 PMC: 10858883. DOI: 10.1038/s42003-024-05832-3.


Problems with using comparative analyses of avian brain size to test hypotheses of cognitive evolution.

Hooper R, Brett B, Thornton A PLoS One. 2022; 17(7):e0270771.

PMID: 35867640 PMC: 9307164. DOI: 10.1371/journal.pone.0270771.


References
1.
Boire D, Baron G . Allometric comparison of brain and main brain subdivisions in birds. J Hirnforsch. 1994; 35(1):49-66. View

2.
Clarke P . Some visual and other connections to the cerebellum of the pigeon. J Comp Neurol. 1977; 174(3):535-52. DOI: 10.1002/cne.901740307. View

3.
Stephan H, FRAHM H, Baron G . New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol (Basel). 1981; 35(1):1-29. DOI: 10.1159/000155963. View

4.
de Winter W, Oxnard C . Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature. 2001; 409(6821):710-4. DOI: 10.1038/35055547. View

5.
Wild J . The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res. 1997; 759(1):122-34. DOI: 10.1016/s0006-8993(97)00253-9. View