» Articles » PMID: 15214778

Identification of Non-phosphate-containing Small Molecular Weight Inhibitors of the Tyrosine Kinase P56 Lck SH2 Domain Via in Silico Screening Against the PY + 3 Binding Site

Overview
Journal J Med Chem
Specialty Chemistry
Date 2004 Jun 25
PMID 15214778
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The protein p56 lymphoid T cell tyrosine kinase (Lck) is predominantly expressed in T lymphocytes where it plays a critical role in T-cell-mediated immune response. Lck participates in phosphotyrosine-dependent protein-protein interactions through its modular binding unit, the Src homology-2 (SH2) domain. Accordingly, virtual screening methods combined with experimental assays were used to identify small molecular weight nonpeptidic compounds that block Lck SH2 domain-dependent interactions. Virtual screening included scoring normalization procedures and postdocking structural clustering that is shown to facilitate the selection of active compounds. By targeting the well-defined hydrophobic binding pocket known to impart specificity on Lck-protein interactions (i.e., pY + 3 site), inhibitors of the Lck SH2 domain were discovered that omit the phosphotyrosine (pY) or related moieties. The 34 out of 196 computationally selected compounds were shown to inhibit Lck SH2 domain association with phosphorylated immunoreceptor tyrosine based activation motifs peptide. Twenty-four of the active compounds were further tested for their ability to modulate biological function. Thirteen of these compounds showed inhibitory activity in mixed lymphocyte culture assay. Fluorescence titration experiments on four of these active compounds further verified their binding to the SH2 domain. Because of their simple chemical structures, these small organic compounds have the potential to act as lead compounds for the development of novel immunosuppressant drugs.

Citing Articles

Identification and Biological Evaluation of a Novel Small-Molecule Inhibitor of Ricin Toxin.

Yang X, Wei A, Cao X, Wang Z, Wan H, Wang B Molecules. 2024; 29(7).

PMID: 38611715 PMC: 11012547. DOI: 10.3390/molecules29071435.


Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An Investigation.

da Silva J, Figueiredo P, Byler K, Setzer W Int J Mol Sci. 2020; 21(10).

PMID: 32408699 PMC: 7279430. DOI: 10.3390/ijms21103426.


Natural Products as New Treatment Options for Trichomoniasis: A Molecular Docking Investigation.

Setzer M, Byler K, Ogungbe I, Setzer W Sci Pharm. 2017; 85(1).

PMID: 28134827 PMC: 5388143. DOI: 10.3390/scipharm85010005.


The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals.

Setzer M, Sharifi-Rad J, Setzer W Antibiotics (Basel). 2016; 5(3).

PMID: 27626453 PMC: 5039526. DOI: 10.3390/antibiotics5030030.


Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf.

Samadani R, Zhang J, Brophy A, Oashi T, Priyakumar U, Raman E Biochem J. 2015; 467(3):425-38.

PMID: 25695333 PMC: 4643458. DOI: 10.1042/BJ20131571.