» Articles » PMID: 15173637

High-resolution Proteomic Mapping in the Vertebrate Central Nervous System: Close Proximity of Connexin35 to NMDA Glutamate Receptor Clusters and Co-localization of Connexin36 with Immunoreactivity for Zonula Occludens Protein-1 (ZO-1)

Overview
Journal J Neurocytol
Specialty Cell Biology
Date 2004 Jun 3
PMID 15173637
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Combined confocal microscopy and freeze-fracture replica immunogold labeling (FRIL) were used to examine the connexin identity at electrical synapses in goldfish brain and rat retina, and to test for "co-localization" vs. "close proximity" of connexins to other functionally interacting proteins in synapses of goldfish and mouse brain and rat retina. In goldfish brain, confocal microscopy revealed immunofluorescence for connexin35 (Cx35) and NMDA-R1 (NR1) glutamate receptor protein in Mauthner Cell/Club Ending synapses. By FRIL double labeling, NR1 glutamate receptors were found in clusters of intramembrane particles in the postsynaptic membrane extraplasmic leaflets, and these distinctive postsynaptic densities were in close proximity (0.1-0.3 microm) to neuronal gap junctions labeled for Cx35, which is the fish ortholog of connexin36 (Cx36) found at neuronal gap junctions in mammals. Immunogold labeling for Cx36 in adult rat retina revealed abundant gap junctions, including several previously unrecognized morphological types. As in goldfish hindbrain, immunogold double labeling revealed NR1-containing postsynaptic densities localized near Cx36-labeled gap junction in rat inferior olive. Confocal immunofluorescence microscopy revealed widespread co-localization of Cx36 and ZO-1, particularly in the reticular thalamic nucleus and amygdala of mouse brain. By FRIL, ZO-1 immunoreactivity was co-localized with Cx36 at individual gap junction plaques in rat retinal neurons. As cytoplasmic accessory proteins, ZO-1 and possibly related members of the membrane-associated guanylate kinase (MAGUK) family represent scaffolding proteins that may bind to and regulate the activity of many neuronal gap junctions. These data document the power of combining immunofluorescence confocal microscopy with FRIL ultrastructural imaging and immunogold labeling to determine the relative proximities of proteins that are involved in short- vs. intermediate-range molecular interactions in the complex membrane appositions at synapses between neurons.

Citing Articles

Patterns of connexin36 and eGFP reporter expression among motoneurons in spinal sexually dimorphic motor nuclei in mouse.

Silwal P, Singhal P, Senecal J, Senecal J, Lynn B, Nagy J Int J Physiol Pathophysiol Pharmacol. 2024; 16(3):55-76.

PMID: 39021417 PMC: 11249853. DOI: 10.62347/OGWV9376.


Association of connexin36 with adherens junctions at mixed synapses and distinguishing electrophysiological features of those at mossy fiber terminals in rat ventral hippocampus.

Thomas D, Recabal-Beyer A, Senecal J, Serletis D, Lynn B, Jackson M Int J Physiol Pathophysiol Pharmacol. 2024; 16(3):28-54.

PMID: 39021415 PMC: 11249852. DOI: 10.62347/RTMH4490.


The role of gap junctions in cell death and neuromodulation in the retina.

Szarka G, Balogh M, Tengolics A, Ganczer A, Volgyi B, Kovacs-Oller T Neural Regen Res. 2021; 16(10):1911-1920.

PMID: 33642359 PMC: 8343308. DOI: 10.4103/1673-5374.308069.


No tight junctions in tight junction protein-1 expressing HeLa and fibroblast cells.

Shi Y, Li R, Yang J, Li X Int J Physiol Pathophysiol Pharmacol. 2020; 12(2):70-78.

PMID: 32419902 PMC: 7218737.


ZO-1 associates with α3 integrin and connexin43 in trabecular meshwork and Schlemm's canal cells.

Li X, Acott T, Nagy J, Kelley M Int J Physiol Pathophysiol Pharmacol. 2020; 12(1):1-10.

PMID: 32211117 PMC: 7076326.


References
1.
Laing J, Koval M, Civitelli R, Steinberg T . Connexin45 interacts with zonula occludens-1 and connexin43 in osteoblastic cells. J Biol Chem. 2001; 276(25):23051-5. DOI: 10.1074/jbc.M100303200. View

2.
Rash J, Yasumura T, Dudek F, Nagy J . Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci. 2001; 21(6):1983-2000. PMC: 1804287. View

3.
Hormuzdi S, Pais I, LeBeau F, Towers S, Rozov A, Buhl E . Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron. 2001; 31(3):487-95. DOI: 10.1016/s0896-6273(01)00387-7. View

4.
Kausalya P, Reichert M, Hunziker W . Connexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial MDCK cells. FEBS Lett. 2001; 505(1):92-6. DOI: 10.1016/s0014-5793(01)02786-7. View

5.
Berman N, Dunn R, Maler L . Function of NMDA receptors and persistent sodium channels in a feedback pathway of the electrosensory system. J Neurophysiol. 2001; 86(4):1612-21. DOI: 10.1152/jn.2001.86.4.1612. View