» Articles » PMID: 15161973

Heme Axial Methionine Fluxionality in Hydrogenobacter Thermophilus Cytochrome C552

Overview
Specialty Science
Date 2004 May 27
PMID 15161973
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

The heme group in paramagnetic (S = 1/2) ferricytochromes c typically displays a markedly asymmetric distribution of unpaired electron spin density among the heme pyrrole beta substituents. This asymmetry is determined by the orientations of the heme axial ligands, histidine and methionine. One exception to this is ferricytochrome c(552) from Hydrogenobacter thermophilus, which has similar amounts of unpaired electron spin density at the beta substituents on all four heme pyrroles. Here, determination of the orientation of the magnetic axes and analysis of NMR line shapes for H. thermophilus ferricytochrome c(552) is performed. These data reveal that the unusual electronic structure for this protein is a result of fluxionality of the heme axial methionine. It is proposed that the ligand undergoes inversion at the pyramidal sulfur, and the rapid interconversion between two diastereomeric forms results in the unusual heme electronic structure. Thus a fluxional process for a metal-bound amino acid side chain has now been identified.

Citing Articles

Uncovering the hidden RNA virus diversity in Lake Nam Co: Evolutionary insights from an extreme high-altitude environment.

Wu L, Liu Y, Shi W, Chang T, Liu P, Liu K Proc Natl Acad Sci U S A. 2025; 122(6):e2420162122.

PMID: 39903107 PMC: 11831205. DOI: 10.1073/pnas.2420162122.


Towards Bacterial Resistance via the Membrane Strategy: Enzymatic, Biophysical and Biomimetic Studies of the Lipid cis-trans Isomerase of Pseudomonas aeruginosa.

Mauger M, Makarchuk I, Molter Y, Sansone A, Melin F, Chaignon P Chembiochem. 2024; 26(1):e202400844.

PMID: 39541259 PMC: 11727003. DOI: 10.1002/cbic.202400844.


Heme-Protein Interactions and Functional Relevant Heme Deformations: The Cytochrome c Case.

Schweitzer-Stenner R Molecules. 2022; 27(24).

PMID: 36557884 PMC: 9781506. DOI: 10.3390/molecules27248751.


Unusual Cytochrome 552 from : Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase.

Britikov V, Bocharov E, Britikova E, Dergousova N, Kulikova O, Solovieva A Int J Mol Sci. 2022; 23(17).

PMID: 36077365 PMC: 9456337. DOI: 10.3390/ijms23179969.


Structural basis for heme detoxification by an ATP-binding cassette-type efflux pump in gram-positive pathogenic bacteria.

Nakamura H, Hisano T, Rahman M, Tosha T, Shirouzu M, Shiro Y Proc Natl Acad Sci U S A. 2022; 119(27):e2123385119.

PMID: 35767641 PMC: 9271180. DOI: 10.1073/pnas.2123385119.


References
1.
Karan E, Russell B, Bren K . Characterization of Hydrogenobacter thermophilus cytochromes c(552 )expressed in the cytoplasm and periplasm of Escherichia coli. J Biol Inorg Chem. 2002; 7(3):260-72. DOI: 10.1007/s007750100292. View

2.
Banci L, Bertini I, Huber J, Spyroulias G, Turano P . Solution structure of reduced horse heart cytochrome c. J Biol Inorg Chem. 1999; 4(1):21-31. DOI: 10.1007/s007750050285. View

3.
Russell B, Zhong L, Bigotti M, Cutruzzola F, Bren K . Backbone dynamics and hydrogen exchange of Pseudomonas aeruginosa ferricytochrome c(551). J Biol Inorg Chem. 2002; 8(1-2):156-66. DOI: 10.1007/s00775-002-0401-z. View

4.
Lumry R, Rajender S . Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers. 1970; 9(10):1125-227. DOI: 10.1002/bip.1970.360091002. View

5.
Sutin N, Yandell J . Mechanisms of the reactions of cytochrome c. Rate and equilibrium constants for ligand binding to horse heart ferricytochrome c. J Biol Chem. 1972; 247(21):6932-6. View