» Articles » PMID: 15146078

Xenopus U3 SnoRNA Docks on Pre-rRNA Through a Novel Base-pairing Interaction

Overview
Journal RNA
Specialty Molecular Biology
Date 2004 May 18
PMID 15146078
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

U3 small nucleolar RNA (snoRNA) is essential for rRNA processing to form 18S ribosomal RNA (rRNA). Previously, it has been shown that nucleolin is needed to load U3 snoRNA on pre-rRNA. However, as documented here, this is not sufficient. We present data that base-pairing between the U3 hinges and the external transcribed spacer (ETS) is critical for functional alignment of U3 on its pre-rRNA substrate. Additionally, the interaction between the U3 hinges and the ETS is proposed to serve as an anchor to hold U3 on the pre-rRNA substrate, while box A at the 5' end of U3 snoRNA swivels from ETS contacts to 18S rRNA contacts. Compensatory base changes revealed base-pairing between the 3' hinge of U3 snoRNA and region E1 of the ETS in Xenopus pre-rRNA; this novel interaction is required for 18S rRNA production. In contrast, base-pairing between the 5' hinge of U3 snoRNA and region E2 of the ETS is auxiliary, unlike the case in yeast where it is required. Thus, higher and lower eukaryotes use different interactions for functional association of U3 with pre-rRNA. The U3 hinge sequence varies between species, but covariation in the ETS retains complementarity. This species-specific U3-pre-rRNA interaction offers a potential target for a new class of antibiotics to prevent ribosome biogenesis in eukaryotic pathogens.

Citing Articles

Functional regions in the 5' external transcribed spacer of yeast pre-rRNA.

Chen J, Zhang L, Ye K RNA. 2020; 26(7):866-877.

PMID: 32213618 PMC: 7297118. DOI: 10.1261/rna.074807.120.


Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA.

Clerget G, Bourguignon-Igel V, Marmier-Gourrier N, Rolland N, Wacheul L, Manival X Nucleic Acids Res. 2020; 48(7):3848-3868.

PMID: 31996908 PMC: 7144924. DOI: 10.1093/nar/gkaa066.


Pre-Ribosomal RNA Processing in Human Cells: From Mechanisms to Congenital Diseases.

Aubert M, ODonohue M, Lebaron S, Gleizes P Biomolecules. 2018; 8(4).

PMID: 30356013 PMC: 6315592. DOI: 10.3390/biom8040123.


Maturation of the 90S pre-ribosome requires Mrd1 dependent U3 snoRNA and 35S pre-rRNA structural rearrangements.

Lackmann F, Belikov S, Burlacu E, Granneman S, Wieslander L Nucleic Acids Res. 2018; 46(7):3692-3706.

PMID: 29373706 PMC: 5909432. DOI: 10.1093/nar/gky036.


Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis.

Zhu P, Wang Y, Qin N, Wang F, Wang J, Deng X Proc Natl Acad Sci U S A. 2016; 113(42):11967-11972.

PMID: 27708161 PMC: 5081647. DOI: 10.1073/pnas.1614852113.


References
1.
Beltrame M, Henry Y, Tollervey D . Mutational analysis of an essential binding site for the U3 snoRNA in the 5' external transcribed spacer of yeast pre-rRNA. Nucleic Acids Res. 1994; 22(23):5139-47. PMC: 523791. DOI: 10.1093/nar/22.23.5139. View

2.
Mougey E, Pape L . A U3 small nuclear ribonucleoprotein-requiring processing event in the 5' external transcribed spacer of Xenopus precursor rRNA. Mol Cell Biol. 1993; 13(10):5990-8. PMC: 364653. DOI: 10.1128/mcb.13.10.5990-5998.1993. View

3.
Hughes J . Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J Mol Biol. 1996; 259(4):645-54. DOI: 10.1006/jmbi.1996.0346. View

4.
Enright C, MAXWELL E, Eliceiri G . 5'ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA. 1996; 2(11):1094-9. PMC: 1369439. View

5.
Gulli M, Faubladier M, Sicard H, Caizergues-Ferrer M, Gas N . Ultrastructural changes in the Schizosaccharomyces pombe nucleolus following the disruption of the gar2+ gene, which encodes a nucleolar protein structurally related to nucleolin. Chromosoma. 1997; 105(7-8):542-52. DOI: 10.1007/BF02510491. View