» Articles » PMID: 15133619

The Role of Stress in the Growth of a Multicell Spheroid

Overview
Journal J Math Biol
Date 2004 May 11
PMID 15133619
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Rather recent experimental results demonstrate the non-negligible role of mechanical stress in the growth of a multicell spheroid. In this paper we discuss a theoretical framework for volumetric growth suitable for modeling the growth of soft tissues exhibiting the properties of a solid. After a proper kinematic decomposition, balance equations for mass, momentum and energy are discussed together with constitutive relationships. The mathematical model is then applied to avascular tumor growth. We show by numerical simulation that, under assumption of spherical symmetry, the mathematical model is able to reproduce the experimental data with a satisfying qualitative agreement.

Citing Articles

Tissue stresses caused by invasive tumour: a biomechanical model.

Xue S J R Soc Interface. 2025; 22(222):20240797.

PMID: 39837483 PMC: 11750364. DOI: 10.1098/rsif.2024.0797.


Chemomechanical regulation of growing tissues from a thermodynamically-consistent framework and its application to tumor spheroid growth.

Olaranont N, Wei C, Lowengrub J, Wu M ArXiv. 2024; .

PMID: 39679269 PMC: 11643224.


Minimal Morphoelastic Models of Solid Tumour Spheroids: A Tutorial.

Walker B, Celora G, Goriely A, Moulton D, Byrne H Bull Math Biol. 2023; 85(5):38.

PMID: 36991173 PMC: 10060352. DOI: 10.1007/s11538-023-01141-8.


How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale.

Erlich A, Etienne J, Fouchard J, Wyatt T Interface Focus. 2022; 12(6):20220038.

PMID: 36330322 PMC: 9560792. DOI: 10.1098/rsfs.2022.0038.


Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a neuroimaging-informed model.

Lucci G, Agosti A, Ciarletta P, Giverso C Biomech Model Mechanobiol. 2022; 21(5):1483-1509.

PMID: 35908096 PMC: 9626445. DOI: 10.1007/s10237-022-01602-4.


References
1.
Rodriguez E, Hoger A, McCulloch A . Stress-dependent finite growth in soft elastic tissues. J Biomech. 1994; 27(4):455-67. DOI: 10.1016/0021-9290(94)90021-3. View

2.
Landman K, Please C . Tumour dynamics and necrosis: surface tension and stability. IMA J Math Appl Med Biol. 2001; 18(2):131-58. View

3.
Skalak R, Zargaryan S, Jain R, Netti P, Hoger A . Compatibility and the genesis of residual stress by volumetric growth. J Math Biol. 1996; 34(8):889-914. DOI: 10.1007/BF01834825. View

4.
Folkman J, Hochberg M . Self-regulation of growth in three dimensions. J Exp Med. 1973; 138(4):745-53. PMC: 2180571. DOI: 10.1084/jem.138.4.745. View

5.
Forgacs G, Foty R, Shafrir Y, Steinberg M . Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J. 1998; 74(5):2227-34. PMC: 1299566. DOI: 10.1016/S0006-3495(98)77932-9. View