Contribution to the Study of Periodic Chronic Myelogenous Leukemia
Affiliations
The period (in the order of 40 to 80 days) in periodic chronic myelogenous leukemia (PCML) oscillations is quite long compared with the duration of the cell cycle of the hematopoietic stem cells from which the oscillations are presumed to originate (in the order of one or two days). Our objective is to understand the origin of these long-period oscillations using a G0 model for stem cell dynamics. We determine the local stability conditions and show under what conditions the Hopf bifurcation may occur. We interpret the role of each parameter in the loss of stability, and then examine a simpler model to try to deduce possible changes at the stem-cell level that might be responsible for the characteristics PCML.
Digitalization of a non-irradiated acute myeloid leukemia model.
Li R, Cheng H, Cheng T, Liu L BMC Syst Biol. 2016; 10 Suppl 3:64.
PMID: 27585558 PMC: 5009825. DOI: 10.1186/s12918-016-0308-x.
A didactical note on the advantage of using two parameters in Hopf bifurcation studies.
Diekmann O, Korvasova K J Biol Dyn. 2013; 7 Suppl 1:21-30.
PMID: 23327443 PMC: 3957471. DOI: 10.1080/17513758.2012.760758.
Mathematical modeling of therapeutic strategies for myeloid malignancies.
Wu D, Li H, Du W, Ji X, Liu W, Huang S Pathol Oncol Res. 2012; 18(4):939-47.
PMID: 22843097 DOI: 10.1007/s12253-012-9524-x.
Analysis of unstable behavior in a mathematical model for erythropoiesis.
Serna S, Nirody J, Racz M J Math Biol. 2012; 66(3):595-625.
PMID: 22476159 DOI: 10.1007/s00285-012-0524-y.
Ainseba B, Benosman C J Math Biol. 2010; 62(6):975-97.
PMID: 20717678 DOI: 10.1007/s00285-010-0360-x.