» Articles » PMID: 15122736

Quantifying and Comparing the Accuracy of Binary Biomarkers when Predicting a Failure Time Outcome

Overview
Journal Stat Med
Publisher Wiley
Specialty Public Health
Date 2004 May 4
PMID 15122736
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The positive and negative predictive values are standard measures used to quantify the predictive accuracy of binary biomarkers when the outcome being predicted is also binary. When the biomarkers are instead being used to predict a failure time outcome, there is no standard way of quantifying predictive accuracy. We propose a natural extension of the traditional predictive values to accommodate censored survival data. We discuss not only quantifying predictive accuracy using these extended predictive values, but also rigorously comparing the accuracy of two biomarkers in terms of their predictive values. Using a marginal regression framework, we describe how to estimate differences in predictive accuracy and how to test whether the observed difference is statistically significant.

Citing Articles

Revised MALT-IPI: A new predictive model that identifies high-risk patients with extranodal marginal zone lymphoma.

Alderuccio J, Reis I, Habermann T, Link B, Thieblemont C, Conconi A Am J Hematol. 2022; 97(12):1529-1537.

PMID: 36057138 PMC: 9847507. DOI: 10.1002/ajh.26715.


Clinical relevance of clonal hematopoiesis in persons aged ≥80 years.

Rossi M, Meggendorfer M, Zampini M, Tettamanti M, Riva E, Travaglino E Blood. 2021; 138(21):2093-2105.

PMID: 34125889 PMC: 8617437. DOI: 10.1182/blood.2021011320.


A Six-Epithelial-Mesenchymal Transition Gene Signature May Predict Metastasis of Triple-Negative Breast Cancer.

Wei L, Zhang X, Wang L, Hu L, Zhang X, Li L Onco Targets Ther. 2020; 13:6497-6509.

PMID: 32753890 PMC: 7342558. DOI: 10.2147/OTT.S256818.


Association of the prognostic model iSEND with PD-1/L1 monotherapy outcome in non-small-cell lung cancer.

Park W, Mezquita L, Okabe N, Chae Y, Kwon D, Saravia D Br J Cancer. 2019; 122(3):340-347.

PMID: 31761899 PMC: 7000664. DOI: 10.1038/s41416-019-0643-y.


A C-index for recurrent event data: Application to hospitalizations among dialysis patients.

Kim S, Schaubel D, McCullough K Biometrics. 2017; 74(2):734-743.

PMID: 28771674 PMC: 6647832. DOI: 10.1111/biom.12761.