Dehalococcoides ethenogenes strain 195 dechlorinates tetrachloroethene to vinyl chloride and ethene, and its genome has been found to contain up to 17 putative dehalogenase gene homologues, suggesting diverse dehalogenation ability. We amended pure or mixed cultures containing D. ethenogenes strain 195 with 1,2,3,4-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3-dichlorodibenzo-p-dioxin, 1,2,3,4-tetrachlorodibenzofuran, 2,3,4,5,6-pentachlorobiphenyl, 1,2,3,4-tetrachloronaphthalene, various chlorobenzenes, or a mixture of 2-, 3-, and 4-chlorophenol to determine the dehalogenation ability. D. ethenogenes strain 195 dechlorinated 1,2,3,4-tetrachlorodibenzo-p-dioxin to a mixture of 1,2,4-trichlorodibenzo-p-dioxin and 1,3-dichlorodibenzo-p-dioxin. 2,3,4,5,6- Pentachlorobiphenyl was dechlorinated to 2,3,4,6- and/or 2,3,5,6-tetrachlorobiphenyl and 2,4,6-trichlorobiphenyl. 1,2,3,4-Tetrachloronaphthalene was dechlorinated primarily to an unidentified dichloronaphthalene congener. The predominant end products from hexachlorobenzene dechlorination were 1,2,3,5-tetrachlorobenzene and 1,3,5-trichlorobenzene. We did not detect dechlorination daughter products from monochlorophenols, 2,3-dichlorodibenzo-p-dioxin or 2,3,7,8- tetrachlorodibenzo-p-dioxin. D. ethenogenes strain 195 has the ability to dechlorinate many different types of chlorinated aromatic compounds, in addition to its known chloroethene respiratory electron acceptors. Remediation of sediments contaminated with aromatic halogenated organic pollutants such as polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins could require billions of dollars in the coming years. Harnessing microorganisms such as Dehalococcoides spp. that detoxify these compounds via removal of halogens may lead to cost-effective biotechnological approaches for remediation.
Citing Articles
Effectiveness of Biological Approaches for Removing Persistent Organic Pollutants from Wastewater: A Mini-Review.
Mateescu C, Lungulescu E, Nicula N
Microorganisms. 2024; 12(8).
PMID: 39203474
PMC: 11356657.
DOI: 10.3390/microorganisms12081632.
Metagenomic 16S rRNA analysis and predictive functional profiling revealed intrinsic organohalides respiration and bioremediation potential in mangrove sediment.
Alsharif S, Ismaeil M, Saeed A, El-Sayed W
BMC Microbiol. 2024; 24(1):176.
PMID: 38778276
PMC: 11110206.
DOI: 10.1186/s12866-024-03291-8.
Resuscitation-Promoting Factor Accelerates Enrichment of Highly Active Tetrachloroethene/Polychlorinated Biphenyl-Dechlorinating Cultures.
Su X, Xie M, Han Z, Xiao Y, Wang R, Shen C
Appl Environ Microbiol. 2023; 89(1):e0195122.
PMID: 36629425
PMC: 9888273.
DOI: 10.1128/aem.01951-22.
Isolation and identification of a 2,3,7,8-Tetrachlorodibenzo-P-dioxin degrading strain and its biochemical degradation pathway.
Qiu L, Zhang W, Gong A, Li J
J Environ Health Sci Eng. 2021; 19(1):541-551.
PMID: 34150257
PMC: 8172717.
DOI: 10.1007/s40201-021-00626-9.
Microbial debromination of hexabromocyclododecanes.
Yu F, Li Y, Wang H, Peng T, Wu Y, Hu Z
Appl Microbiol Biotechnol. 2021; 105(11):4535-4550.
PMID: 34076715
DOI: 10.1007/s00253-021-11095-3.
Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation.
Mohapatra B, Phale P
Front Bioeng Biotechnol. 2021; 9:602445.
PMID: 33791281
PMC: 8006333.
DOI: 10.3389/fbioe.2021.602445.
Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice.
Tu P, Gao B, Chi L, Lai Y, Bian X, Ru H
Sci Rep. 2019; 9(1):4363.
PMID: 30867497
PMC: 6416245.
DOI: 10.1038/s41598-019-40776-3.
Diastereoisomer-Specific Biotransformation of Hexabromocyclododecanes by a Mixed Culture Containing Strain 195.
Zhong Y, Wang H, Yu Z, Geng X, Chen C, Li D
Front Microbiol. 2018; 9:1713.
PMID: 30131775
PMC: 6090157.
DOI: 10.3389/fmicb.2018.01713.
Effects of Ferric Oxyhydroxide on Anaerobic Microbial Dechlorination of Polychlorinated Biphenyls in Hudson and Grasse River Sediment Microcosms: Dechlorination Extent, Preferences, Removal, and Its Enhancement.
Xu Y, Gregory K, VanBriesen J
Front Microbiol. 2018; 9:1574.
PMID: 30079053
PMC: 6062599.
DOI: 10.3389/fmicb.2018.01574.
Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications.
Ang T, Maiangwa J, Bakar Salleh A, Normi Y, Leow T
Molecules. 2018; 23(5).
PMID: 29735886
PMC: 6100074.
DOI: 10.3390/molecules23051100.
Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations.
Garrido-Sanz D, Manzano J, Martin M, Redondo-Nieto M, Rivilla R
Front Microbiol. 2018; 9:232.
PMID: 29497412
PMC: 5818466.
DOI: 10.3389/fmicb.2018.00232.
Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1.
Heavner G, Mansfeldt C, Debs G, Hellerstedt S, Rowe A, Richardson R
Microorganisms. 2018; 6(1).
PMID: 29419787
PMC: 5874627.
DOI: 10.3390/microorganisms6010013.
as a Potential Biomarker Evidence for Uncharacterized Organohalides in Environmental Samples.
Lu Q, Yu L, Liang Z, Yan Q, He Z, Luan T
Front Microbiol. 2017; 8:1677.
PMID: 28919889
PMC: 5585146.
DOI: 10.3389/fmicb.2017.01677.
Dechlorination of three tetrachlorobenzene isomers by contaminated harbor sludge-derived enrichment cultures follows thermodynamically favorable reactions.
Lu Y, Ramiro-Garcia J, Vandermeeren P, Herrmann S, Cichocka D, Springael D
Appl Microbiol Biotechnol. 2016; 101(6):2589-2601.
PMID: 27909745
PMC: 5320011.
DOI: 10.1007/s00253-016-8004-8.
Widespread Distribution of Dehalococcoides mccartyi in the Houston Ship Channel and Galveston Bay, Texas, Sediments and the Potential for Reductive Dechlorination of PCDD/F in an Estuarine Environment.
Hieke A, Brinkmeyer R, Yeager K, Schindler K, Zhang S, Xu C
Mar Biotechnol (NY). 2016; 18(6):630-644.
PMID: 27844293
DOI: 10.1007/s10126-016-9723-7.
Indirect Evidence Link PCB Dehalogenation with Geobacteraceae in Anaerobic Sediment-Free Microcosms.
Praveckova M, Brennerova M, Holliger C, De Alencastro F, Rossi P
Front Microbiol. 2016; 7:933.
PMID: 27379063
PMC: 4909783.
DOI: 10.3389/fmicb.2016.00933.
Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea.
Oni O, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs K
Front Microbiol. 2015; 6:1290.
PMID: 26635758
PMC: 4658423.
DOI: 10.3389/fmicb.2015.01290.
Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities.
Matturro B, Ubaldi C, Grenni P, Caracciolo A, Rossetti S
Environ Sci Pollut Res Int. 2015; 23(13):12613-23.
PMID: 26162439
DOI: 10.1007/s11356-015-4960-2.
Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes.
Liang X, Molenda O, Tang S, Edwards E
Appl Environ Microbiol. 2015; 81(14):4626-33.
PMID: 25934625
PMC: 4551202.
DOI: 10.1128/AEM.00536-15.
Microbial community analysis of switchgrass planted and unplanted soil microcosms displaying PCB dechlorination.
Liang Y, Meggo R, Hu D, Schnoor J, Mattes T
Appl Microbiol Biotechnol. 2015; 99(15):6515-26.
PMID: 25820643
PMC: 4498989.
DOI: 10.1007/s00253-015-6545-x.