» Articles » PMID: 15082561

Large Retrotransposon Derivatives: Abundant, Conserved but Nonautonomous Retroelements of Barley and Related Genomes

Overview
Journal Genetics
Specialty Genetics
Date 2004 Apr 15
PMID 15082561
Citations 75
Authors
Affiliations
Soon will be listed here.
Abstract

Retroviruses and LTR retrotransposons comprise two long-terminal repeats (LTRs) bounding a central domain that encodes the products needed for reverse transcription, packaging, and integration into the genome. We describe a group of retrotransposons in 13 species and four genera of the grass tribe Triticeae, including barley, with long, approximately 4.4-kb LTRs formerly called Sukkula elements. The approximately 3.5-kb central domains include reverse transcriptase priming sites and are conserved in sequence but contain no open reading frames encoding typical retrotransposon proteins. However, they specify well-conserved RNA secondary structures. These features describe a novel group of elements, called LARDs or large retrotransposon derivatives (LARDs). These appear to be members of the gypsy class of LTR retrotransposons. Although apparently nonautonomous, LARDs appear to be transcribed and can be recombinationally mapped due to the polymorphism of their insertion sites. They are dispersed throughout the genome in an estimated 1.3 x 10(3) full-length copies and 1.16 x 10(4) solo LTRs, indicating frequent recombinational loss of internal domains as demonstrated also for the BARE-1 barley retrotransposon.

Citing Articles

Transposable elements: multifunctional players in the plant genome.

Hassan A, Mokhtar M, El Allali A Front Plant Sci. 2024; 14:1330127.

PMID: 38239225 PMC: 10794571. DOI: 10.3389/fpls.2023.1330127.


Editorial: Mobile elements and plant genome evolution, comparative analyses and computational tools, volume II.

Kalendar R, Karlov G Front Plant Sci. 2023; 14:1308536.

PMID: 38023887 PMC: 10676221. DOI: 10.3389/fpls.2023.1308536.


MegaLTR: a web server and standalone pipeline for detecting and annotating LTR-retrotransposons in plant genomes.

Mokhtar M, El Allali A Front Plant Sci. 2023; 14:1237426.

PMID: 37810401 PMC: 10552921. DOI: 10.3389/fpls.2023.1237426.


PlantLTRdb: An interactive database for 195 plant species LTR-retrotransposons.

Mokhtar M, Alsamman A, El Allali A Front Plant Sci. 2023; 14:1134627.

PMID: 36950350 PMC: 10025401. DOI: 10.3389/fpls.2023.1134627.


Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress.

Papolu P, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L Front Plant Sci. 2022; 13:1064847.

PMID: 36570931 PMC: 9780303. DOI: 10.3389/fpls.2022.1064847.


References
1.
Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman A . A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol. 2002; 48(5-6):767-90. DOI: 10.1023/a:1014831511810. View

2.
Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B . Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 2001; 26(3):307-16. DOI: 10.1046/j.1365-313x.2001.01028.x. View

3.
Witte C, Le Q, Bureau T, Kumar A . Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A. 2001; 98(24):13778-83. PMC: 61118. DOI: 10.1073/pnas.241341898. View

4.
Petersen G, Seberg O . Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol Phylogenet Evol. 1997; 7(2):217-30. DOI: 10.1006/mpev.1996.0389. View

5.
Kumekawa N, Ohtsubo H, Horiuchi T, Ohtsubo E . Identification and characterization of novel retrotransposons of the gypsy type in rice. Mol Gen Genet. 1999; 260(6):593-602. DOI: 10.1007/s004380050933. View