» Articles » PMID: 15036394

Changes in Mechanical Properties of Human Plantar Flexor Muscles in Ageing

Overview
Journal Exp Gerontol
Specialty Geriatrics
Date 2004 Mar 24
PMID 15036394
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Changes in contractile and elastic properties of human plantar flexor muscles in ageing, were investigated in 12 young (19-24 years, YG) and 11 old (61-74 year, OG) men. Maximal isometric and concentric voluntary torques, at several angular velocities, were measured to construct torque-angular velocity relationship. This led to the calculation of an index of maximal shorting velocity (VImax) at low torque. Two methods were then used to calculate musculotendinous (MT, quick-release movements) and musculoarticular (MA, sinusoidal perturbations) stiffness. In both cases, stiffness was linearly related to torque, leading to the calculation of a stiffness index (SI) as the slope of the stiffness-torque relationship: SI(MT) and SI(MA), respectively. MA stiffness under passive conditions (Kp) was also determined. Surface electromyograms were useful to control agonist and antagonist myoelectrical activities. As expected, maximal isometric (P<0.005) and concentric torques (P<0.05) as well as VImax(p<0.05) were lower in OG compared to YG. SI(MT) values were higher for OG compared to YG (P<0.05) leading to a mean difference of 55%, whereas SI(MA) and Kp were not significantly different between the two groups. Thus, older men were weaker and exhibited higher SI(MT) values. These impairments seem to be principally due to muscular atrophy and modifications in both muscle fibre-type distribution and fibre composition, in ageing. Invariance of SI(MA) and Kp would suggest an adaptive mechanism in articular structures to avoid the continuous integration of the ankle joint stiffness by the central nervous system, what may simplify most daily motor tasks.

Citing Articles

Influence of the physical pressure of an ultrasound probe on shear-wave elastography measurements of the gastrocnemius muscle in a paediatric population: a non-interventional cohort study.

Cebula A, Cebula M, Czajkowska M, Gruszczynska K, Kopyta I Pol J Radiol. 2024; 89:e24-e29.

PMID: 38371890 PMC: 10867979. DOI: 10.5114/pjr.2024.134437.


The impact of age-related increase in passive muscle stiffness on simulated upper limb reaching.

Murtola T, Richards C R Soc Open Sci. 2023; 10(2):221453.

PMID: 36778951 PMC: 9905985. DOI: 10.1098/rsos.221453.


Stiffness of the Masseter Muscle in Children-Establishing the Reference Values in the Pediatric Population Using Shear-Wave Elastography.

Olchowy C, Olchowy A, Pawlus A, Wieckiewicz M, Sconfienza L Int J Environ Res Public Health. 2021; 18(18).

PMID: 34574544 PMC: 8469581. DOI: 10.3390/ijerph18189619.


Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment.

Marcucci L, Reggiani C Eur J Transl Myol. 2020; 30(2):8982.

PMID: 32782762 PMC: 7385684. DOI: 10.4081/ejtm.2019.8982.


Alterations of Extracellular Matrix Mechanical Properties Contribute to Age-Related Functional Impairment of Human Skeletal Muscles.

Pavan P, Monti E, Bondi M, Fan C, Stecco C, Narici M Int J Mol Sci. 2020; 21(11).

PMID: 32498422 PMC: 7312402. DOI: 10.3390/ijms21113992.