» Articles » PMID: 15020742

Anchoring 9,371 Maize Expressed Sequence Tagged Unigenes to the Bacterial Artificial Chromosome Contig Map by Two-dimensional Overgo Hybridization

Abstract

Our goal is to construct a robust physical map for maize (Zea mays) comprehensively integrated with the genetic map. We have used a two-dimensional 24 x 24 overgo pooling strategy to anchor maize expressed sequence tagged (EST) unigenes to 165,888 bacterial artificial chromosomes (BACs) on high-density filters. A set of 70,716 public maize ESTs seeded derivation of 10,723 EST unigene assemblies. From these assemblies, 10,642 overgo sequences of 40 bp were applied as hybridization probes. BAC addresses were obtained for 9,371 overgo probes, representing an 88% success rate. More than 96% of the successful overgo probes identified two or more BACs, while 5% identified more than 50 BACs. The majority of BACs identified (79%) were hybridized with one or two overgos. A small number of BACs hybridized with eight or more overgos, suggesting that these BACs must be gene rich. Approximately 5,670 overgos identified BACs assembled within one contig, indicating that these probes are highly locus specific. A total of 1,795 megabases (Mb; 87%) of the total 2,050 Mb in BAC contigs were associated with one or more overgos, which are serving as sequence-tagged sites for single nucleotide polymorphism development. Overgo density ranged from less than one overgo per megabase to greater than 20 overgos per megabase. The majority of contigs (52%) hit by overgos contained three to nine overgos per megabase. Analysis of approximately 1,022 Mb of genetically anchored BAC contigs indicates that 9,003 of the total 13,900 overgo-contig sites are genetically anchored. Our results indicate overgos are a powerful approach for generating gene-specific hybridization probes that are facilitating the assembly of an integrated genetic and physical map for maize.

Citing Articles

Biochemical and Epigenetic Regulation of Glutamate Metabolism in Maize ( L.) Leaves under Salt Stress.

Eprintsev A, Anokhina G, Selivanova P, Moskvina P, Igamberdiev A Plants (Basel). 2024; 13(18).

PMID: 39339624 PMC: 11434742. DOI: 10.3390/plants13182651.


Effective BAC clone anchoring with genotyping-by-sequencing and Diversity Arrays Technology in a large genome cereal rye.

Borzecka E, Hawliczek-Strulak A, Bolibok L, Gawronski P, Tofil K, Milczarski P Sci Rep. 2018; 8(1):8428.

PMID: 29849048 PMC: 5976670. DOI: 10.1038/s41598-018-26541-y.


High-throughput physical map anchoring via BAC-pool sequencing.

Cvikova K, Cattonaro F, Alaux M, Stein N, Mayer K, Dolezel J BMC Plant Biol. 2015; 15:99.

PMID: 25887276 PMC: 4407875. DOI: 10.1186/s12870-015-0429-1.


Comparative transcriptome profiling of maize coleoptilar nodes during shoot-borne root initiation.

Muthreich N, Majer C, Beatty M, Paschold A, Schutzenmeister A, Fu Y Plant Physiol. 2013; 163(1):419-30.

PMID: 23843603 PMC: 3762660. DOI: 10.1104/pp.113.221481.


Construction and characterization of a BAC library from the Coffea arabica genotype Timor Hybrid CIFC 832/2.

Cacao S, Silva N, Domingues D, Vieira L, Diniz L, Vinecky F Genetica. 2013; 141(4-6):217-26.

PMID: 23677718 DOI: 10.1007/s10709-013-9720-y.


References
1.
McPherson J, Marra M, Hillier L, Waterston R, Chinwalla A, Wallis J . A physical map of the human genome. Nature. 2001; 409(6822):934-41. DOI: 10.1038/35057157. View

2.
Cai W, Chow C, Damani S, Gregory S, Marra M, Bradley A . An SSLP marker-anchored BAC framework map of the mouse genome. Nat Genet. 2001; 29(2):133-4. DOI: 10.1038/ng1001-133. View

3.
Shizuya H, Birren B, Kim U, Mancino V, Slepak T, Tachiiri Y . Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A. 1992; 89(18):8794-7. PMC: 50007. DOI: 10.1073/pnas.89.18.8794. View

4.
Han C, Sutherland R, Jewett P, Campbell M, Meincke L, Tesmer J . Construction of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization. Genome Res. 2000; 10(5):714-21. PMC: 310869. DOI: 10.1101/gr.10.5.714. View

5.
Fu H, Dooner H . Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A. 2002; 99(14):9573-8. PMC: 123182. DOI: 10.1073/pnas.132259199. View