» Articles » PMID: 15014130

Loss-of-function Analysis of EphA Receptors in Retinotectal Mapping

Overview
Journal J Neurosci
Specialty Neurology
Date 2004 Mar 12
PMID 15014130
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

EphA tyrosine kinases are thought to act as topographically specific receptors in the well-characterized projection map from the retina to the tectum. Here, we describe a loss-of-function analysis of EphA receptors in retinotectal mapping. Expressing patches of a cytoplasmically truncated EphA3 receptor in chick retina caused temporal axons to have reduced responsiveness to posterior tectal repellent activity in vitro and to shift more posteriorly within the map in vivo. A gene disruption of mouse EphA5, replacing the intracellular domain with beta-galactosidase, reduced in vitro responsiveness of temporal axons to posterior target membranes. It also caused map abnormalities in vivo, with temporal axons shifted posteriorly and nasal axons anteriorly, but with the entire target still filled by retinal axons. The anterior shift of nasal axons was not accompanied by increased responsiveness to tectal repellent activity, in contrast to the comparable anterior shift in ephrin-A knock-outs, helping to resolve a previous ambiguity in interpreting the ephrin gene knock-outs. The results show the functional requirement for endogenous EphA receptors in retinotectal mapping, show that the receptor intracellular domain is required for a forward signaling response to topographic cues, and provide new evidence for a role of axon competition in topographic mapping.

Citing Articles

EphA4 Mediates EphrinB1-Dependent Adhesion in Retinal Ganglion Cells.

Murcia-Belmonte V, Chauvin G, Coca Y, Escalante A, Klein R, Herrera E J Neurosci. 2024; 45(4.

PMID: 39622649 PMC: 11756631. DOI: 10.1523/JNEUROSCI.0043-24.2024.


Molecular Mimicry between B-Cell Epitopes and Neurodevelopmental Proteins: An Immunoinformatic Approach.

Meza-Sosa K, Valle-Garcia D, Gonzalez-Conchillos H, Blanco-Ayala T, Salazar A, Flores I Biomolecules. 2024; 14(8).

PMID: 39199321 PMC: 11352964. DOI: 10.3390/biom14080933.


Subcellular second messenger networks drive distinct repellent-induced axon behaviors.

Baudet S, Zagar Y, Roche F, Gomez-Bravo C, Couvet S, Becret J Nat Commun. 2023; 14(1):3809.

PMID: 37369692 PMC: 10300027. DOI: 10.1038/s41467-023-39516-z.


Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development.

Clark J, Soriano P Curr Top Dev Biol. 2022; 149:123-152.

PMID: 35606055 PMC: 9127239. DOI: 10.1016/bs.ctdb.2021.12.001.


Hearing loss genes reveal patterns of adaptive evolution at the coding and non-coding levels in mammals.

Trigila A, Pisciottano F, Franchini L BMC Biol. 2021; 19(1):244.

PMID: 34784928 PMC: 8594068. DOI: 10.1186/s12915-021-01170-6.


References
1.
OLeary D, Wilkinson D . Eph receptors and ephrins in neural development. Curr Opin Neurobiol. 1999; 9(1):65-73. DOI: 10.1016/s0959-4388(99)80008-7. View

2.
McLaughlin T, OLeary D . Functional consequences of coincident expression of EphA receptors and ephrin-A ligands. Neuron. 1999; 22(4):636-9. DOI: 10.1016/s0896-6273(00)80718-7. View

3.
Hornberger M, Dutting D, Ciossek T, Yamada T, Handwerker C, Lang S . Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron. 1999; 22(4):731-42. DOI: 10.1016/s0896-6273(00)80732-1. View

4.
Mellitzer G, Xu Q, Wilkinson D . Eph receptors and ephrins restrict cell intermingling and communication. Nature. 1999; 400(6739):77-81. DOI: 10.1038/21907. View

5.
Goodhill G, Richards L . Retinotectal maps: molecules, models and misplaced data. Trends Neurosci. 1999; 22(12):529-34. DOI: 10.1016/s0166-2236(99)01469-1. View