Flierman N, Koay S, van Hoogstraten W, Ruigrok T, Roelfsema P, Badura A
Elife. 2025; 13.
PMID: 39819496
PMC: 11737872.
DOI: 10.7554/eLife.99696.
Seo S, Bharmauria V, Schutz A, Yan X, Wang H, Crawford J
eNeuro. 2024; 11(8).
PMID: 39054056
PMC: 11373882.
DOI: 10.1523/ENEURO.0413-23.2024.
Kang J, Mooshagian E, Snyder L
Cell Rep. 2024; 43(4):114028.
PMID: 38581681
PMC: 11090617.
DOI: 10.1016/j.celrep.2024.114028.
Kehoe D, Fallah M
Front Syst Neurosci. 2023; 17:1251933.
PMID: 37899790
PMC: 10600481.
DOI: 10.3389/fnsys.2023.1251933.
Stepniewska I, Kahler-Quesada S, Kaas J, Friedman R
Cereb Cortex. 2023; 33(11):7258-7275.
PMID: 36813296
PMC: 10233296.
DOI: 10.1093/cercor/bhad036.
Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets.
Kaneko T, Komatsu M, Yamamori T, Ichinohe N, Okano H
Commun Biol. 2022; 5(1):108.
PMID: 35115680
PMC: 8814246.
DOI: 10.1038/s42003-022-03052-1.
Dissociable Cortical and Subcortical Mechanisms for Mediating the Influences of Visual Cues on Microsaccadic Eye Movements.
Hafed Z, Yoshida M, Tian X, Buonocore A, Malevich T
Front Neural Circuits. 2021; 15:638429.
PMID: 33776656
PMC: 7991613.
DOI: 10.3389/fncir.2021.638429.
Functional links between sensory representations, choice activity, and sensorimotor associations in parietal cortex.
Chang T, Doudlah R, Kim B, Sunkara A, Thompson L, Lowe M
Elife. 2020; 9.
PMID: 33078705
PMC: 7641584.
DOI: 10.7554/eLife.57968.
The resonant brain: How attentive conscious seeing regulates action sequences that interact with attentive cognitive learning, recognition, and prediction.
Grossberg S
Atten Percept Psychophys. 2019; 81(7):2237-2264.
PMID: 31218601
PMC: 6848053.
DOI: 10.3758/s13414-019-01789-2.
Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking.
Worringer B, Langner R, Koch I, Eickhoff S, Eickhoff C, Binkofski F
Brain Struct Funct. 2019; 224(5):1845-1869.
PMID: 31037397
PMC: 7254756.
DOI: 10.1007/s00429-019-01870-4.
The neural instantiation of a priority map.
Bisley J, Mirpour K
Curr Opin Psychol. 2019; 29:108-112.
PMID: 30731260
PMC: 6625938.
DOI: 10.1016/j.copsyc.2019.01.002.
Anti-Saccades in Cerebellar Ataxias Reveal a Contribution of the Cerebellum in Executive Functions.
Pretegiani E, Piu P, Rosini F, Federighi P, Serchi V, Tumminelli G
Front Neurol. 2018; 9:274.
PMID: 29740392
PMC: 5926529.
DOI: 10.3389/fneur.2018.00274.
What do eye movements tell us about patients with neurological disorders? - An introduction to saccade recording in the clinical setting.
Terao Y, Fukuda H, Hikosaka O
Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93(10):772-801.
PMID: 29225306
PMC: 5790757.
DOI: 10.2183/pjab.93.049.
Two subdivisions of macaque LIP process visual-oculomotor information differently.
Chen M, Li B, Guang J, Wei L, Wu S, Liu Y
Proc Natl Acad Sci U S A. 2016; 113(41):E6263-E6270.
PMID: 27681616
PMC: 5068279.
DOI: 10.1073/pnas.1605879113.
LIP activity in the interstimulus interval of a change detection task biases the behavioral response.
Arcizet F, Mirpour K, Foster D, Charpentier C, Bisley J
J Neurophysiol. 2015; 114(5):2637-48.
PMID: 26334012
PMC: 4643093.
DOI: 10.1152/jn.00604.2015.
Contrasting the roles of the supplementary and frontal eye fields in ocular decision making.
Yang S, Heinen S
J Neurophysiol. 2014; 111(12):2644-55.
PMID: 24671543
PMC: 4044436.
DOI: 10.1152/jn.00543.2013.
Decoupled visually-guided reaching in optic ataxia: differences in motor control between canonical and non-canonical orientations in space.
Granek J, Pisella L, Stemberger J, Vighetto A, Rossetti Y, Sergio L
PLoS One. 2014; 8(12):e86138.
PMID: 24392035
PMC: 3877394.
DOI: 10.1371/journal.pone.0086138.
Differential roles of the frontal and parietal cortices in the control of saccades.
Bender J, Tark K, Reuter B, Kathmann N, Curtis C
Brain Cogn. 2013; 83(1):1-9.
PMID: 23867736
PMC: 3954743.
DOI: 10.1016/j.bandc.2013.06.005.
Specialization of reach function in human posterior parietal cortex.
Vesia M, Crawford J
Exp Brain Res. 2012; 221(1):1-18.
PMID: 22777102
DOI: 10.1007/s00221-012-3158-9.
What are the Odds? The Neural Correlates of Active Choice during Gambling.
Studer B, Apergis-Schoute A, Robbins T, Clark L
Front Neurosci. 2012; 6:46.
PMID: 22529770
PMC: 3328778.
DOI: 10.3389/fnins.2012.00046.