McKinley L, Meyer M, Sebastian A, Chang B, Messina K, Albert I
Nucleic Acids Res. 2024; 52(22):14133-14153.
PMID: 39498486
PMC: 11662667.
DOI: 10.1093/nar/gkae908.
Ganguly A, Weissman B, Giese T, Li N, Hoshika S, Rao S
Nat Chem. 2020; 12(2):193-201.
PMID: 31959957
PMC: 7389185.
DOI: 10.1038/s41557-019-0391-x.
Wang Y, Liu E, Lam C, Perrin D
Chem Sci. 2018; 9(7):1813-1821.
PMID: 29675226
PMC: 5890787.
DOI: 10.1039/c7sc04491g.
Bergonzo C, Cheatham 3rd T
Biophys J. 2017; 113(2):313-320.
PMID: 28669407
PMC: 5529310.
DOI: 10.1016/j.bpj.2017.06.008.
Dagenais P, Girard N, Bonneau E, Legault P
Wiley Interdiscip Rev RNA. 2017; 8(5).
PMID: 28382748
PMC: 5573960.
DOI: 10.1002/wrna.1421.
Probing fast ribozyme reactions under biological conditions with rapid quench-flow kinetics.
Bingaman J, Messina K, Bevilacqua P
Methods. 2017; 120:125-134.
PMID: 28315484
PMC: 5447473.
DOI: 10.1016/j.ymeth.2017.03.011.
The Hammerhead Ribozyme: A Long History for a Short RNA.
de la Pena M, Garcia-Robles I, Cervera A
Molecules. 2017; 22(1).
PMID: 28054987
PMC: 6155905.
DOI: 10.3390/molecules22010078.
Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension.
Adamala K, Engelhart A, Szostak J
J Am Chem Soc. 2014; 137(1):483-9.
PMID: 25521912
PMC: 4984999.
DOI: 10.1021/ja511564d.
A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme.
Bouchard P, Legault P
RNA. 2014; 20(9):1451-64.
PMID: 25051972
PMC: 4138328.
DOI: 10.1261/rna.046144.114.
Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA.
Haurwitz R, Sternberg S, Doudna J
EMBO J. 2012; 31(12):2824-32.
PMID: 22522703
PMC: 3380207.
DOI: 10.1038/emboj.2012.107.
Mechanisms of RNA catalysis.
Lilley D
Philos Trans R Soc Lond B Biol Sci. 2011; 366(1580):2910-7.
PMID: 21930582
PMC: 3158914.
DOI: 10.1098/rstb.2011.0132.
Additional roles of a peripheral loop-loop interaction in the Neurospora VS ribozyme.
DeAbreu D, Olive J, Collins R
Nucleic Acids Res. 2011; 39(14):6223-8.
PMID: 21507887
PMC: 3152364.
DOI: 10.1093/nar/gkr250.
Nucleases: diversity of structure, function and mechanism.
Yang W
Q Rev Biophys. 2010; 44(1):1-93.
PMID: 20854710
PMC: 6320257.
DOI: 10.1017/S0033583510000181.
Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme.
Wilson T, Li N, Lu J, Frederiksen J, Piccirilli J, Lilley D
Proc Natl Acad Sci U S A. 2010; 107(26):11751-6.
PMID: 20547881
PMC: 2900685.
DOI: 10.1073/pnas.1004255107.
A conformational switch in the DiGIR1 ribozyme involved in release and folding of the downstream I-DirI mRNA.
Nielsen H, Einvik C, Lentz T, Hedegaard M, Johansen S
RNA. 2009; 15(5):958-67.
PMID: 19329537
PMC: 2673072.
DOI: 10.1261/rna.669209.
Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis.
Pereira M, Nikolova E, Hiley S, Jaikaran D, Collins R, Walter N
J Mol Biol. 2008; 382(2):496-509.
PMID: 18656481
PMC: 2575853.
DOI: 10.1016/j.jmb.2008.07.020.
An important role of G638 in the cis-cleavage reaction of the Neurospora VS ribozyme revealed by a novel nucleotide analog incorporation method.
Jaikaran D, Smith M, Mehdizadeh R, Olive J, Collins R
RNA. 2008; 14(5):938-49.
PMID: 18356538
PMC: 2327350.
DOI: 10.1261/rna.936508.
Ligand-dependent folding of the three-way junction in the purine riboswitch.
Stoddard C, Gilbert S, Batey R
RNA. 2008; 14(4):675-84.
PMID: 18268025
PMC: 2271371.
DOI: 10.1261/rna.736908.
Emergence of a fast-reacting ribozyme that is capable of undergoing continuous evolution.
Voytek S, Joyce G
Proc Natl Acad Sci U S A. 2007; 104(39):15288-93.
PMID: 17878292
PMC: 2000504.
DOI: 10.1073/pnas.0707490104.
A guanine nucleobase important for catalysis by the VS ribozyme.
Wilson T, McLeod A, Lilley D
EMBO J. 2007; 26(10):2489-500.
PMID: 17464286
PMC: 1868910.
DOI: 10.1038/sj.emboj.7601698.