Abdellatif A, Ahmed F, Mohammed A, Alsharidah M, Al-Subaiyel A, Samman W
Int J Nanomedicine. 2023; 18:3247-3281.
PMID: 37337575
PMC: 10277008.
DOI: 10.2147/IJN.S405964.
Olson L, Hunter N, Rempel R, Sullenger B
Transl Res. 2022; 245:30-40.
PMID: 35245691
PMC: 9167234.
DOI: 10.1016/j.trsl.2022.02.007.
Kelly L, Olson L, Rempel R, Everitt J, LeVine D, Nair S
Mol Ther. 2021; 30(2):845-854.
PMID: 34628051
PMC: 8821959.
DOI: 10.1016/j.ymthe.2021.10.003.
Moller K, Macaulay B, Bein T
Nanomaterials (Basel). 2021; 11(2).
PMID: 33672006
PMC: 7919290.
DOI: 10.3390/nano11020489.
Kopecek J, Yang J
Adv Drug Deliv Rev. 2020; 156:40-64.
PMID: 32735811
PMC: 7736172.
DOI: 10.1016/j.addr.2020.07.020.
Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs.
Liu F, Wang C, Gao Y, Li X, Tian F, Zhang Y
Mol Diagn Ther. 2018; 22(5):551-569.
PMID: 29926308
DOI: 10.1007/s40291-018-0338-8.
Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments.
Karlsson J, Vaughan H, Green J
Annu Rev Chem Biomol Eng. 2018; 9:105-127.
PMID: 29579402
PMC: 6215694.
DOI: 10.1146/annurev-chembioeng-060817-084055.
Complex Coacervation-Integrated Hybrid Nanoparticles Increasing Plasmid DNA Delivery Efficiency in Vivo.
Li Y, Humphries B, Wang Z, Lang S, Huang X, Xiao H
ACS Appl Mater Interfaces. 2016; 8(45):30735-30746.
PMID: 27781434
PMC: 6457453.
DOI: 10.1021/acsami.6b10306.
Targeted polymeric nanoparticles for cancer gene therapy.
Kim J, Wilson D, Zamboni C, Green J
J Drug Target. 2015; 23(7-8):627-41.
PMID: 26061296
PMC: 4696040.
DOI: 10.3109/1061186X.2015.1048519.
Lipid nanoparticles for short interfering RNA delivery.
Leung A, Tam Y, Cullis P
Adv Genet. 2014; 88:71-110.
PMID: 25409604
PMC: 7149983.
DOI: 10.1016/B978-0-12-800148-6.00004-3.
Therapeutic potential of siRNA and DNAzymes in cancer.
Karnati H, Yalagala R, Undi R, Pasupuleti S, Gutti R
Tumour Biol. 2014; 35(10):9505-21.
PMID: 25149153
DOI: 10.1007/s13277-014-2477-9.
Non-viral vectors for gene-based therapy.
Yin H, Kanasty R, Eltoukhy A, Vegas A, Dorkin J, Anderson D
Nat Rev Genet. 2014; 15(8):541-55.
PMID: 25022906
DOI: 10.1038/nrg3763.
Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine.
Xue H, Liu S, Wong H
Nanomedicine (Lond). 2014; 9(2):295-312.
PMID: 24552562
PMC: 4095781.
DOI: 10.2217/nnm.13.204.
Aptamers: problems, solutions and prospects.
Lakhin A, Tarantul V, Gening L
Acta Naturae. 2014; 5(4):34-43.
PMID: 24455181
PMC: 3890987.
Delivery materials for siRNA therapeutics.
Kanasty R, Dorkin J, Vegas A, Anderson D
Nat Mater. 2013; 12(11):967-77.
PMID: 24150415
DOI: 10.1038/nmat3765.
Cyclodextrins in non-viral gene delivery.
Lai W
Biomaterials. 2013; 35(1):401-11.
PMID: 24103652
PMC: 7112483.
DOI: 10.1016/j.biomaterials.2013.09.061.
Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery.
Carlson P, Schellinger J, Pahang J, Johnson R, Pun S
Biomater Sci. 2013; 1(7):736-744.
PMID: 23750319
PMC: 3673726.
DOI: 10.1039/C3BM60079C.
The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.
Stearns N, Lee J, Leong K, Sullenger B, Pisetsky D
PLoS One. 2012; 7(7):e40862.
PMID: 22808279
PMC: 3394750.
DOI: 10.1371/journal.pone.0040862.
Application of living free radical polymerization for nucleic acid delivery.
Chu D, Schellinger J, Shi J, Convertine A, Stayton P, Pun S
Acc Chem Res. 2012; 45(7):1089-99.
PMID: 22242774
PMC: 3516364.
DOI: 10.1021/ar200242z.
In vivo delivery of nucleic acids via glycopolymer vehicles affords therapeutic infarct size reduction in vivo.
Tranter M, Liu Y, He S, Gulick J, Ren X, Robbins J
Mol Ther. 2011; 20(3):601-8.
PMID: 22186793
PMC: 3293615.
DOI: 10.1038/mt.2011.267.