» Articles » PMID: 14702394

The Importance of the Tat-dependent Protein Secretion Pathway in Streptomyces As Revealed by Phenotypic Changes in Tat Deletion Mutants and Genome Analysis

Overview
Specialty Microbiology
Date 2004 Jan 2
PMID 14702394
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Streptomyces are Gram-positive soil bacteria that are used industrially, not only as a source of medically important natural compounds, but also as a host for the secretory production of a number of heterologous proteins. A good understanding of the different secretion processes in this organism is therefore of major importance. The functionality of the recently discovered bacterial twin-arginine translocation (Tat) pathway has already been shown in Streptomyces lividans. Here, the aberrant phenotype of S. lividans DeltatatB and DeltatatC single mutants is described. Both mutants are characterized by a dispersed growth in liquid medium, an impaired morphological differentiation on solid medium and growth retardation. To reveal the extent to which the Tat pathway is used in Streptomyces, putative Tat-dependent precursor proteins of Streptomyces coelicolor, a very close relative of S. lividans, and of Streptomyces avermitilis, of which the genomes have been completely sequenced, were identified by a modified version of the TATFIND computer program designed by Rose and colleagues [Rose, R. W., Brüser, T., Kissinger, J. C. & Pohlschröder, M. (2002). Mol Microbiol 45, 943-950]. A list of 230 precursor proteins was obtained; this is the highest number of putative Tat substrates found in any genome so far. In addition to the Streptomyces antibioticus tyrosinase, it was also demonstrated that the secretion of the S. lividans xylanase C is Tat-dependent. The predicted Tat substrates belong to a variety of protein classes, with a high number of proteins functioning in degradation of macromolecules, in binding and transport, and in secondary metabolism. Only a minor fraction of the proteins seem to bind a cofactor. The aberrant phenotype of the DeltatatB and DeltatatC mutants together with the high number of putative Tat-dependent substrates suggests that the Streptomyces Tat pathway has a distinct and more important role in protein secretion than in most other bacteria.

Citing Articles

Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase.

Gallego-Parrilla J, Severi E, Chandra G, Palmer T Microbiology (Reading). 2024; 170(2).

PMID: 38363712 PMC: 10924467. DOI: 10.1099/mic.0.001431.


σ of Streptomyces coelicolor can function both as a direct activator or repressor of transcription.

Pospisil J, Schwarz M, Zikova A, Vitovska D, Hradilova M, Kolar M Commun Biol. 2024; 7(1):46.

PMID: 38184746 PMC: 10771440. DOI: 10.1038/s42003-023-05716-y.


The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems.

Panis F, Rompel A Environ Sci Technol. 2022; 56(17):11952-11968.

PMID: 35944157 PMC: 9454253. DOI: 10.1021/acs.est.2c03770.


Monitoring Protein Secretion in Using Fluorescent Proteins.

Hamed M, Vrancken K, Bilyk B, Koepff J, Novakova R, Van Mellaert L Front Microbiol. 2018; 9:3019.

PMID: 30581427 PMC: 6292873. DOI: 10.3389/fmicb.2018.03019.


The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces.

Gullon S, Mellado R Antibiotics (Basel). 2018; 7(2).

PMID: 29661993 PMC: 6022935. DOI: 10.3390/antibiotics7020033.