» Articles » PMID: 14691219

Effect of the N3 Residue on the Stability of the Alpha-helix

Overview
Journal Protein Sci
Specialty Biochemistry
Date 2003 Dec 24
PMID 14691219
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

N3 is the third position from the N terminus in the alpha-helix with helical backbone dihedral angles. All 20 amino acids have been placed in the N3 position of a synthetic helical peptide (CH(3)CO-[AAX AAAAKAAAAKAGY]-NH(2)) and the helix content measured by circular dichroism spectroscopy at 273 K. The dependence of peptide helicity on N3 residue identity has been used to determine a free energy scale by analysis with a modified Lifson-Roig helix coil theory that includes a parameter for the N3 energy (n3). The most stabilizing residues at N3 in rank order are Ala, Glu, Met/Ile, Leu, Lys, Ser, Gln, Thr, Tyr, Phe, Asp, His, and Trp. Free energies for the most destabilizing residues (Cys, Gly, Asn, Arg, and Pro) could not be fitted. The results correlate with N1, N2, and helix interior energies and not at all with N-cap preferences. This completes our work on studying the structural and energetic preferences of the amino acids for the N-terminal positions of the alpha-helix. These results can be used to rationally modify protein stability, help design helices, and improve prediction of helix location and stability.

Citing Articles

The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes.

Cleverley R, Rutter Z, Rismondo J, Corona F, Tsui H, Alatawi F Nat Commun. 2019; 10(1):261.

PMID: 30651563 PMC: 6335420. DOI: 10.1038/s41467-018-08056-2.


Mapping side chain interactions at protein helix termini.

Newell N BMC Bioinformatics. 2015; 16:231.

PMID: 26209176 PMC: 4515027. DOI: 10.1186/s12859-015-0671-4.


Local and macroscopic electrostatic interactions in single α-helices.

Baker E, Bartlett G, Crump M, Sessions R, Linden N, Faul C Nat Chem Biol. 2015; 11(3):221-8.

PMID: 25664692 PMC: 4668598. DOI: 10.1038/nchembio.1739.


Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins.

Guo Y, Yuan C, Tian F, Huang K, Weghorst C, Tsai M J Mol Biol. 2010; 399(1):168-81.

PMID: 20398677 PMC: 2879631. DOI: 10.1016/j.jmb.2010.04.010.


End-to-end and end-to-middle interhelical interactions: new classes of interacting helix pairs in protein structures.

Ghosh T, Chaitanya S, Sankararamakrishnan R Acta Crystallogr D Biol Crystallogr. 2009; 65(Pt 10):1032-41.

PMID: 19770500 PMC: 2756166. DOI: 10.1107/S0907444909027012.


References
1.
Penel S, Hughes E, Doig A . Side-chain structures in the first turn of the alpha-helix. J Mol Biol. 1999; 287(1):127-43. DOI: 10.1006/jmbi.1998.2549. View

2.
Rohl C, Chakrabartty A, Baldwin R . Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. Protein Sci. 1996; 5(12):2623-37. PMC: 2143311. DOI: 10.1002/pro.5560051225. View

3.
Andrew C, Bhattacharjee S, Kokkoni N, Hirst J, Jones G, Doig A . Stabilizing interactions between aromatic and basic side chains in alpha-helical peptides and proteins. Tyrosine effects on helix circular dichroism. J Am Chem Soc. 2002; 124(43):12706-14. DOI: 10.1021/ja027629h. View

4.
Miranda J . Position-dependent interactions between cysteine residues and the helix dipole. Protein Sci. 2002; 12(1):73-81. PMC: 2312398. DOI: 10.1110/ps.0224203. View

5.
EDELHOCH H . Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967; 6(7):1948-54. DOI: 10.1021/bi00859a010. View