Chaux F, Agier N, Garrido C, Fischer G, Eberhard S, Xu Z
Genome Res. 2023; 33(9):1582-1598.
PMID: 37580131
PMC: 10620057.
DOI: 10.1101/gr.278043.123.
Schratz K, Flasch D, Atik C, Cosner Z, Blackford A, Yang W
Cancer Cell. 2023; 41(4):807-817.e6.
PMID: 37037617
PMC: 10188244.
DOI: 10.1016/j.ccell.2023.03.005.
Buemi V, Schillaci O, Santorsola M, Bonazza D, Broccia P, Zappone A
Nat Commun. 2022; 13(1):2302.
PMID: 35484160
PMC: 9050681.
DOI: 10.1038/s41467-022-29907-z.
Holland C, Sanderson B, Titus J, Weis M, Riojas A, Malczewskyj E
G3 (Bethesda). 2021; 11(12).
PMID: 34718547
PMC: 8664480.
DOI: 10.1093/g3journal/jkab359.
Guterres A, Villanueva J
Oncogene. 2020; 39(36):5811-5824.
PMID: 32733068
PMC: 7678952.
DOI: 10.1038/s41388-020-01405-w.
Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging.
Dahiya R, Mohammad T, Alajmi M, Rehman M, Hasan G, Hussain A
Biomolecules. 2020; 10(6).
PMID: 32526825
PMC: 7355435.
DOI: 10.3390/biom10060882.
Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells.
Schwartz E, Hung S, Meyer D, Piazza A, Yan K, Fu B
PLoS Genet. 2020; 16(5):e1008816.
PMID: 32469862
PMC: 7286520.
DOI: 10.1371/journal.pgen.1008816.
Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping.
Langston R, Palazzola D, Bonnell E, Wellinger R, Weinert T
PLoS Genet. 2020; 16(4):e1008733.
PMID: 32287268
PMC: 7205313.
DOI: 10.1371/journal.pgen.1008733.
The many types of heterogeneity in replicative senescence.
Xu Z, Teixeira M
Yeast. 2019; 36(11):637-648.
PMID: 31306505
PMC: 6900063.
DOI: 10.1002/yea.3433.
Adaptation in replicative senescence: a risky business.
Coutelier H, Xu Z
Curr Genet. 2019; 65(3):711-716.
PMID: 30637477
DOI: 10.1007/s00294-019-00933-7.
Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.
Coutelier H, Xu Z, Morisse M, Lhuillier-Akakpo M, Pelet S, Charvin G
Genes Dev. 2018; 32(23-24):1499-1513.
PMID: 30463903
PMC: 6295172.
DOI: 10.1101/gad.318485.118.
Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability.
Mason J, McEachern M
Curr Genet. 2018; 64(5):997-1000.
PMID: 29589105
DOI: 10.1007/s00294-018-0822-z.
Mild Telomere Dysfunction as a Force for Altering the Adaptive Potential of Subtelomeric Genes.
Mason J, McEachern M
Genetics. 2017; 208(2):537-548.
PMID: 29242289
PMC: 5788520.
DOI: 10.1534/genetics.117.300607.
Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast.
Beyer T, Weinert T
PLoS Genet. 2016; 12(10):e1006345.
PMID: 27716774
PMC: 5065131.
DOI: 10.1371/journal.pgen.1006345.
Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins.
Jay K, Smith D, Blackburn E
Mol Cell Biol. 2016; 36(14):1908-19.
PMID: 27161319
PMC: 4936065.
DOI: 10.1128/MCB.00943-15.
Elevated Genome-Wide Instability in Yeast Mutants Lacking RNase H Activity.
OConnell K, Jinks-Robertson S, Petes T
Genetics. 2015; 201(3):963-75.
PMID: 26400613
PMC: 4649664.
DOI: 10.1534/genetics.115.182725.
Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages.
Xu Z, Fallet E, Paoletti C, Fehrmann S, Charvin G, Teixeira M
Nat Commun. 2015; 6:7680.
PMID: 26158780
PMC: 4503340.
DOI: 10.1038/ncomms8680.
Aging-Induced Stem Cell Mutations as Drivers for Disease and Cancer.
Adams P, Jasper H, Rudolph K
Cell Stem Cell. 2015; 16(6):601-12.
PMID: 26046760
PMC: 4509784.
DOI: 10.1016/j.stem.2015.05.002.
Multiple Mechanisms Contribute To Telomere Maintenance.
Morrish T, Bekbolysnov D, Velliquette D, Morgan M, Ross B, Wang Y
J Cancer Biol Res. 2014; 1(3).
PMID: 25285314
PMC: 4181876.
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.
Yin Y, Petes T
PLoS Genet. 2013; 9(10):e1003894.
PMID: 24204306
PMC: 3814309.
DOI: 10.1371/journal.pgen.1003894.