» Articles » PMID: 14583755

Diagnostic and Prognostic Prediction Using Gene Expression Profiles in High-dimensional Microarray Data

Overview
Journal Br J Cancer
Specialty Oncology
Date 2003 Oct 30
PMID 14583755
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

DNA microarrays are a potentially powerful technology for improving diagnostic classification, treatment selection and therapeutics development. There are, however, many potential pitfalls in the use of microarrays that result in false leads and erroneous conclusions. This paper provides a review of the key features to be observed in developing diagnostic and prognostic classification systems based on gene expression profiling and some of the pitfalls to be aware of in reading reports of microarray-based studies.

Citing Articles

Deep centroid: a general deep cascade classifier for biomedical omics data classification.

Xie K, Hou Y, Zhou X Bioinformatics. 2024; 40(2).

PMID: 38305432 PMC: 10868341. DOI: 10.1093/bioinformatics/btae039.


Prognostic gene expression signatures of breast cancer are lacking a sensible biological meaning.

Manjang K, Tripathi S, Yli-Harja O, Dehmer M, Glazko G, Emmert-Streib F Sci Rep. 2021; 11(1):156.

PMID: 33420139 PMC: 7794581. DOI: 10.1038/s41598-020-79375-y.


SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery.

Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel J, Gupta S, Hanks B J Immunother Cancer. 2020; 8(2).

PMID: 33268350 PMC: 7713206. DOI: 10.1136/jitc-2020-000705.


The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments.

Mezencev R, Subramaniam R Toxicol Appl Pharmacol. 2019; 380:114706.

PMID: 31400414 PMC: 9624462. DOI: 10.1016/j.taap.2019.114706.


Effective Feature Selection for Classification of Promoter Sequences.

K K, P G L, Rangarajan L, K A PLoS One. 2016; 11(12):e0167165.

PMID: 27978541 PMC: 5158321. DOI: 10.1371/journal.pone.0167165.


References
1.
Deutsch J . Evolutionary algorithms for finding optimal gene sets in microarray prediction. Bioinformatics. 2002; 19(1):45-52. DOI: 10.1093/bioinformatics/19.1.45. View

2.
Kim S, Dougherty E, Barrera J, Chen Y, Bittner M, Trent J . Strong feature sets from small samples. J Comput Biol. 2002; 9(1):127-46. DOI: 10.1089/10665270252833226. View

3.
J van t Veer L, Dai H, van de Vijver M, He Y, Hart A, Mao M . Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002; 415(6871):530-6. DOI: 10.1038/415530a. View

4.
Khan J, Wei J, Ringner M, Saal L, Ladanyi M, Westermann F . Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 2001; 7(6):673-9. PMC: 1282521. DOI: 10.1038/89044. View

5.
Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C, Angelo M . Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A. 2001; 98(26):15149-54. PMC: 64998. DOI: 10.1073/pnas.211566398. View