» Articles » PMID: 14576294

Diversity of Type II Restriction Endonucleases That Require Two DNA Recognition Sites

Overview
Specialty Biochemistry
Date 2003 Oct 25
PMID 14576294
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Orthodox Type IIP restriction endonucleases, which are commonly used in molecular biological work, recognize a single palindromic DNA recognition sequence and cleave within or near this sequence. Several new studies have reported on structural and biochemical peculiarities of restriction endonucleases that differ from the orthodox in that they require two copies of a particular DNA recognition sequence to cleave the DNA. These two sites requiring restriction endonucleases belong to different subtypes of Type II restriction endonucleases, namely Types IIE, IIF and IIS. We compare enzymes of these three types with regard to their DNA recognition and cleavage properties. The simultaneous recognition of two identical DNA sites by these restriction endonucleases ensures that single unmethylated recognition sites do not lead to chromosomal DNA cleavage, and might reflect evolutionary connections to other DNA processing proteins that specifically function with two sites.

Citing Articles

Comprehensive Analysis of Antiphage Defense Mechanisms: Serovar-Specific Patterns.

Petakh P, Oksenych V, Khovpey Y, Kamyshnyi O Antibiotics (Basel). 2024; 13(6).

PMID: 38927188 PMC: 11201134. DOI: 10.3390/antibiotics13060522.


Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI.

Kennedy M, Hosford C, Azumaya C, Luyten Y, Chen M, Morgan R Nucleic Acids Res. 2023; 51(9):4467-4487.

PMID: 36987874 PMC: 10201449. DOI: 10.1093/nar/gkad228.


A nucleotide-sensing endonuclease from the Gabija bacterial defense system.

Cheng R, Huang F, Wu H, Lu X, Yan Y, Yu B Nucleic Acids Res. 2021; 49(9):5216-5229.

PMID: 33885789 PMC: 8136825. DOI: 10.1093/nar/gkab277.


Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation.

de Sousa J, Buffet A, Haudiquet M, Rocha E, Rendueles O ISME J. 2020; 14(12):2980-2996.

PMID: 32732904 PMC: 7784688. DOI: 10.1038/s41396-020-0726-z.


A sequence-specific nicking endonuclease from streptomyces: purification, physical and catalytic properties.

Somyoonsap P, Kitpreechavanich V, Pornbanlualap S ISRN Biochem. 2015; 2013:287158.

PMID: 25937959 PMC: 4392989. DOI: 10.1155/2013/287158.


References
1.
Arber W . Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev. 2000; 24(1):1-7. DOI: 10.1111/j.1574-6976.2000.tb00529.x. View

2.
Bozic D, Grazulis S, Siksnys V, Huber R . Crystal structure of Citrobacter freundii restriction endonuclease Cfr10I at 2.15 A resolution. J Mol Biol. 1996; 255(1):176-86. DOI: 10.1006/jmbi.1996.0015. View

3.
Hickman A, Li Y, Mathew S, May E, Craig N, Dyda F . Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol Cell. 2000; 5(6):1025-34. DOI: 10.1016/s1097-2765(00)80267-1. View

4.
Deibert M, Grazulis S, Sasnauskas G, Siksnys V, Huber R . Structure of the tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA. Nat Struct Biol. 2000; 7(9):792-9. DOI: 10.1038/79032. View

5.
Mucke M, Lurz R, Mackeldanz P, Behlke J, Kruger D, Reuter M . Imaging DNA loops induced by restriction endonuclease EcoRII. A single amino acid substitution uncouples target recognition from cooperative DNA interaction and cleavage. J Biol Chem. 2000; 275(39):30631-7. DOI: 10.1074/jbc.M003904200. View