» Articles » PMID: 14532213

Practical Disk Diffusion Method for Detection of Inducible Clindamycin Resistance in Staphylococcus Aureus and Coagulase-negative Staphylococci

Overview
Specialty Microbiology
Date 2003 Oct 9
PMID 14532213
Citations 129
Authors
Affiliations
Soon will be listed here.
Abstract

Resistance to macrolides in staphylococci may be due to active efflux (encoded by msrA) or ribosomal target modification (macrolide-lincosamide-streptogramin B [MLSB] resistance; usually encoded by ermA or ermC). MLSB resistance is either constitutive or inducible following exposure to a macrolide. Induction tests utilize closely approximated erythromycin and clindamycin disks; the flattening of the clindamycin zone adjacent to the erythromycin disk indicates inducible MLSB resistance. The present study reassessed the reliability of placing erythromycin and clindamycin disks in adjacent positions (26 to 28 mm apart) in a standard disk dispenser, compared to distances of 15 or 20 mm. A group of 130 clinical isolates of Staphylococcus aureus and 100 isolates of erythromycin-resistant coagulase-negative staphylococci (CNS) were examined by disk approximation; all CNS isolates and a subset of S. aureus isolates were examined by PCR for ermA, ermC, and msrA. Of 114 erythromycin-resistant S. aureus isolates, 39 demonstrated constitutive resistance to clindamycin, while 33 showed inducible resistance by disk approximation at all three distances. Only one isolate failed to clearly demonstrate induction at 26 mm. Of 82 erythromycin-resistant CNS isolates that contained ermA or ermC, 57 demonstrated constitutive clindamycin resistance, and 25 demonstrated inducible resistance, at 20 and 26 mm. None of the 42 S. aureus isolates or 18 CNS isolates containing only msrA and none of the erythromycin-susceptible isolates yielded positive disk approximation tests. Simple placement of erythromycin and clindamycin disks at a distance achieved with a standard disk dispenser allowed detection of 97% of S. aureus strains and 100% of CNS strains with inducible MLSB resistance in this study.

Citing Articles

Evolution of community-associated MRSA: a 20-year genomic and epidemiological study in Region Örebro County, Sweden.

Kekki J, Thegel A, Stenmark B, Soderquist B Front Microbiol. 2025; 15:1504860.

PMID: 39764449 PMC: 11701036. DOI: 10.3389/fmicb.2024.1504860.


Mechanisms of Staphylococcus aureus Antibiotics Resistance Revealed by Adaptive Laboratory Evolution.

Ma S, Xu Y, Ma J, Luo D, Huang Z, Wang L Curr Microbiol. 2025; 82(1):46.

PMID: 39762552 DOI: 10.1007/s00284-024-03980-7.


Antimicrobial Resistance of spp. from Human Specimens Submitted to Diagnostic Laboratories in South Africa, 2012-2017.

Sigudu T, Oguttu J, Qekwana D Microorganisms. 2024; 12(9).

PMID: 39338536 PMC: 11433687. DOI: 10.3390/microorganisms12091862.


Utilization of the Shensheng-Piwen changed medicinal powder extracts combines metal-organic frameworks as an antibacterial agent.

Jin H, Zhang X, Ma X, Meng X, Lin Z, Li X Front Cell Infect Microbiol. 2024; 14:1376312.

PMID: 38912207 PMC: 11193333. DOI: 10.3389/fcimb.2024.1376312.


Biocompatible antibiotic-coupled nickel-titanium nanoparticles as a potential coating material for biomedical devices.

McGlumphy S, Damai A, Salameh L, Corbin G, Wang Q, Markiewicz J Heliyon. 2024; 10(10):e31434.

PMID: 38831845 PMC: 11145499. DOI: 10.1016/j.heliyon.2024.e31434.


References
1.
Watanakunakorn C . Clindamycin therapy of Staphylococcus aureus endocarditis. Clinical relapse and development of resistance to clindamycin, lincomycin and erythromycin. Am J Med. 1976; 60(3):419-25. DOI: 10.1016/0002-9343(76)90758-0. View

2.
Di Modugno V, Guerrini M, Shah S, Hamilton-Miller J . Low level resistance to oleandomycin as a marker of ermA in staphylococci. J Antimicrob Chemother. 2002; 49(2):425-7. DOI: 10.1093/jac/49.2.425. View

3.
Frank A, Marcinak J, Mangat P, Tjhio J, Kelkar S, Schreckenberger P . Clindamycin treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatr Infect Dis J. 2002; 21(6):530-4. DOI: 10.1097/00006454-200206000-00010. View

4.
Weisblum B, Demohn V . Erythromycin-inducible resistance in Staphylococcus aureus: survey of antibiotic classes involved. J Bacteriol. 1969; 98(2):447-52. PMC: 284837. DOI: 10.1128/jb.98.2.447-452.1969. View

5.
McGehee RF R, Barre F, FINLAND M . Resistance of Staphylococcus aureus to lincomycin, clinimycin, and erythromycin. Antimicrob Agents Chemother (Bethesda). 1968; 8:392-7. View