Tang Y, Chen J, Illes P
Purinergic Signal. 2022; 19(1):1-3.
PMID: 36515791
PMC: 9984570.
DOI: 10.1007/s11302-022-09914-x.
Natale G, Ryskalin L, Morucci G, Lazzeri G, Frati A, Fornai F
Life (Basel). 2021; 11(8).
PMID: 34440476
PMC: 8400095.
DOI: 10.3390/life11080732.
Sanders K, Mutafova-Yambolieva V
Auton Neurosci. 2021; 234:102829.
PMID: 34146957
PMC: 8575072.
DOI: 10.1016/j.autneu.2021.102829.
Mutafova-Yambolieva V, Durnin L
Pharmacol Ther. 2014; 144(2):162-91.
PMID: 24887688
PMC: 4185222.
DOI: 10.1016/j.pharmthera.2014.05.012.
Burnstock G
Purinergic Signal. 2013; 10(1):3-50.
PMID: 24307520
PMC: 3944042.
DOI: 10.1007/s11302-013-9397-9.
Purinergic signalling: from discovery to current developments.
Burnstock G
Exp Physiol. 2013; 99(1):16-34.
PMID: 24078669
PMC: 4208685.
DOI: 10.1113/expphysiol.2013.071951.
The roles of purinergic signaling during gastrointestinal inflammation.
Roberts J, Lukewich M, Sharkey K, Furness J, Mawe G, Lomax A
Curr Opin Pharmacol. 2012; 12(6):659-66.
PMID: 23063457
PMC: 3515696.
DOI: 10.1016/j.coph.2012.09.011.
Discovery of purinergic signalling, the initial resistance and current explosion of interest.
Burnstock G
Br J Pharmacol. 2012; 167(2):238-55.
PMID: 22537142
PMC: 3481036.
DOI: 10.1111/j.1476-5381.2012.02008.x.
Purinergic signaling in the gastrointestinal tract.
Burnstock G
World J Gastrointest Pathophysiol. 2011; 2(2):31-4.
PMID: 21607164
PMC: 3097967.
DOI: 10.4291/wjgp.v2.i2.31.
P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca2+ in mouse embryonic stem cell-derived GABAergic neurons.
Khaira S, Pouton C, Haynes J
Br J Pharmacol. 2010; 158(8):1922-31.
PMID: 20050186
PMC: 2807654.
DOI: 10.1111/j.1476-5381.2009.00479.x.
Purinergic signalling.
Burnstock G
Br J Pharmacol. 2006; 147 Suppl 1:S172-81.
PMID: 16402102
PMC: 1760723.
DOI: 10.1038/sj.bjp.0706429.
Neuromyogenic properties of the internal anal sphincter: therapeutic rationale for anal fissures.
Bhardwaj R, Vaizey C, Boulos P, Hoyle C
Gut. 2000; 46(6):861-8.
PMID: 10807901
PMC: 1756456.
DOI: 10.1136/gut.46.6.861.
Evidence that nitric oxide acts as an inhibitory neurotransmitter supplying taenia from the guinea-pig caecum.
Shuttleworth C, Sweeney K, Sanders K
Br J Pharmacol. 1999; 127(6):1495-501.
PMID: 10455301
PMC: 1760669.
DOI: 10.1038/sj.bjp.0702674.
Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. 1970.
Burnstock G, Campbell G, Satchell D, Smythe A
Br J Pharmacol. 1997; 120(4 Suppl):337-57; discussion 334-6.
PMID: 9142414
PMC: 3224310.
DOI: 10.1111/j.1476-5381.1997.tb06815.x.
Hyperpolarization and inhibition of contraction mediated by nitric oxide released from enteric inhibitory neurones in guinea-pig taenia coli.
Ward S, Dalziel H, KHOYI M, Westfall A, Sanders K, Westfall D
Br J Pharmacol. 1996; 118(1):49-56.
PMID: 8733575
PMC: 1909498.
DOI: 10.1111/j.1476-5381.1996.tb15365.x.
Review lecture. Neurotransmitters and trophic factors in the autonomic nervous system.
Burnstock G
J Physiol. 1981; 313:1-35.
PMID: 6115939
PMC: 1274434.
DOI: 10.1113/jphysiol.1981.sp013648.
Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli.
BULBRING E, Tomita T
J Physiol. 1967; 189(2):299-315.
PMID: 6034115
PMC: 1396064.
DOI: 10.1113/jphysiol.1967.sp008169.
Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli.
Bennett M, Burnstock G, Holman M
J Physiol. 1966; 182(3):541-58.
PMID: 5943000
PMC: 1357486.
DOI: 10.1113/jphysiol.1966.sp007836.
The inhibitory innervation of the taenia of the guinea-pig caecum.
Burnstock G, Campbell G, Rand M
J Physiol. 1966; 182(3):504-26.
PMID: 5942999
PMC: 1357484.
DOI: 10.1113/jphysiol.1966.sp007834.
The effect of some anticholinesterases on the response of the taenia to sympathetic nerve stimulation.
Ng K
J Physiol. 1966; 182(2):233-43.
PMID: 5942028
PMC: 1357469.
DOI: 10.1113/jphysiol.1966.sp007821.