Liang M, Gerwien J, Gutschalk A
Commun Biol. 2025; 8(1):180.
PMID: 39910341
PMC: 11799217.
DOI: 10.1038/s42003-025-07601-2.
Orf M, Hannemann R, Obleser J
J Neurosci. 2025; 45(11).
PMID: 39843232
PMC: 11905343.
DOI: 10.1523/JNEUROSCI.0238-24.2024.
Chung Y, Jin J, Jo H, Lee H, Kim S, Chung S
Sensors (Basel). 2021; 21(21).
PMID: 34770341
PMC: 8586978.
DOI: 10.3390/s21217036.
Reyes A
PLoS Comput Biol. 2021; 17(8):e1009251.
PMID: 34339409
PMC: 8360601.
DOI: 10.1371/journal.pcbi.1009251.
Pieper I, Mauermann M, Kollmeier B, Ewert S
Front Psychol. 2021; 12:634943.
PMID: 34239474
PMC: 8258351.
DOI: 10.3389/fpsyg.2021.634943.
Applications of Phenomenological Loudness Models to Cochlear Implants.
McKay C
Front Psychol. 2021; 11:611517.
PMID: 33519626
PMC: 7838155.
DOI: 10.3389/fpsyg.2020.611517.
Development of a Deep Neural Network for Speeding Up a Model of Loudness for Time-Varying Sounds.
Schlittenlacher J, Turner R, Moore B
Trends Hear. 2020; 24:2331216520943074.
PMID: 32853098
PMC: 7457659.
DOI: 10.1177/2331216520943074.
The importance of processing resolution in "ideal time-frequency segregation" of masked speech and the implications for predicting speech intelligibility.
Conroy C, Best V, Jennings T, Kidd Jr G
J Acoust Soc Am. 2020; 147(3):1648.
PMID: 32237827
PMC: 7075715.
DOI: 10.1121/10.0000893.
Vocal Loudness Variation With Spectral Slope.
Titze I, Palaparthi A
J Speech Lang Hear Res. 2020; 63(1):74-82.
PMID: 31940253
PMC: 7213475.
DOI: 10.1044/2019_JSLHR-19-00018.
Effects of relative and absolute frequency in the spectral weighting of loudness.
Joshi S, Wroblewski M, Schmid K, Jesteadt W
J Acoust Soc Am. 2016; 139(1):373-83.
PMID: 26827032
PMC: 4723418.
DOI: 10.1121/1.4939893.
Development and current status of the "Cambridge" loudness models.
Moore B
Trends Hear. 2014; 18.
PMID: 25315375
PMC: 4227665.
DOI: 10.1177/2331216514550620.
Perceptual weights for loudness judgments of six-tone complexes.
Jesteadt W, Valente D, Joshi S, Schmid K
J Acoust Soc Am. 2014; 136(2):728-35.
PMID: 25096107
PMC: 4144179.
DOI: 10.1121/1.4887478.
Are auditory percepts determined by experience?.
Monson B, Han S, Purves D
PLoS One. 2013; 8(5):e63728.
PMID: 23667666
PMC: 3646789.
DOI: 10.1371/journal.pone.0063728.
Spectro-temporal weighting of loudness.
Oberfeld D, Heeren W, Rennies J, Verhey J
PLoS One. 2012; 7(11):e50184.
PMID: 23209670
PMC: 3509144.
DOI: 10.1371/journal.pone.0050184.
An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain.
Zeng F
Hear Res. 2012; 295:172-9.
PMID: 22641191
PMC: 3593089.
DOI: 10.1016/j.heares.2012.05.009.
[Acoustic analyses of snoring sounds: the possibilities and outlook].
Herzog M
HNO. 2012; 60(4):300-7.
PMID: 22491878
DOI: 10.1007/s00106-012-2487-0.
The role of temporal-masking patterns in the determination of subjective duration and loudness for ramped and damped sounds.
Ries D, Schlauch R, DiGiovanni J
J Acoust Soc Am. 2009; 124(6):3772-83.
PMID: 19206803
PMC: 2676627.
DOI: 10.1121/1.2999342.
Current-level discrimination and spectral profile analysis in multi-channel electrical stimulation.
Goupell M, Laback B, Majdak P, Baumgartner W
J Acoust Soc Am. 2008; 124(5):3142-57.
PMID: 19045799
PMC: 3004436.
DOI: 10.1121/1.2981638.
Use of perceptual weights to test a model of loudness summation.
Leibold L, Jesteadt W
J Acoust Soc Am. 2007; 122(3):EL69.
PMID: 17927310
PMC: 2213509.
DOI: 10.1121/1.2761918.
Loudness adaptation in acoustic and electric hearing.
Tang Q, Liu S, Zeng F
J Assoc Res Otolaryngol. 2006; 7(1):59-70.
PMID: 16425088
PMC: 2504588.
DOI: 10.1007/s10162-005-0023-6.