Tokuda S, Yu A
Int J Mol Sci. 2019; 20(14).
PMID: 31319610
PMC: 6678979.
DOI: 10.3390/ijms20143513.
Erlij D, Martinez-Palomo A
J Membr Biol. 2013; 9(1):229-40.
PMID: 24177650
DOI: 10.1007/BF01868054.
Beppu N, Higure Y, Mashiyama K, Ohtubo Y, Kumazawa T, Yoshii K
Pflugers Arch. 2012; 463(6):845-51.
PMID: 22422087
DOI: 10.1007/s00424-012-1097-8.
Gondzik V, Awayda M
Am J Physiol Cell Physiol. 2011; 301(1):C162-70.
PMID: 21451104
PMC: 3129831.
DOI: 10.1152/ajpcell.00459.2010.
Schweigel M, Freyer M, Leclercq S, Etschmann B, Lodemann U, Bottcher A
J Comp Physiol B. 2005; 175(8):575-91.
PMID: 16177895
DOI: 10.1007/s00360-005-0021-3.
Calcium site specificity. Early Ca2+-related tight junction events.
Lacaz-Vieira F
J Gen Physiol. 1998; 110(6):727-40.
PMID: 9382899
PMC: 2229402.
DOI: 10.1085/jgp.110.6.727.
Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical IsK channel in vestibular dark cells.
Wangemann P, Liu J, Shen Z, Shipley A, Marcus D
J Membr Biol. 1995; 147(3):263-73.
PMID: 8558592
DOI: 10.1007/BF00234524.
Small transepithelial osmotic gradients affect apical sodium permeability in frog skin.
Brodin B, Nielsen R
Pflugers Arch. 1993; 423(5-6):411-7.
PMID: 8394566
DOI: 10.1007/BF00374935.
Control of Na+ and H+ transports by exocytosis/endocytosis phenomena in a tight epithelium.
Lacoste I, Brochiero E, Ehrenfeld J
J Membr Biol. 1993; 134(3):197-212.
PMID: 7692059
DOI: 10.1007/BF00234501.
Cell swelling activates a poorly selective monovalent cation channel in the apical membrane of toad urinary bladder.
Van Driessche W, Erlij D
Pflugers Arch. 1994; 428(1):1-8.
PMID: 7526336
DOI: 10.1007/BF00374745.
Cellular mechanisms of ion transport associated with osmotic gradients in rat small intestine.
Decker R, Jackson M, Tai Y
J Physiol. 1981; 318:385-94.
PMID: 7320896
PMC: 1245497.
DOI: 10.1113/jphysiol.1981.sp013872.
The osmotic behaviour of toad skin epithelium (Bufo viridis). an electron microprobe analysis.
Rick R, Dorge A, Katz U, Bauer R, Thurau K
Pflugers Arch. 1980; 385(1):1-10.
PMID: 7191092
DOI: 10.1007/BF00583908.
Transepithelial Na+ transport and the intracellular fluids: a computer study.
Civan M, Bookman R
J Membr Biol. 1982; 65(1-2):63-80.
PMID: 7057462
DOI: 10.1007/BF01870470.
Cellular lithium and transepithelial transport across toad urinary bladder.
Hughes P, Macknight A
J Membr Biol. 1982; 70(1):69-88.
PMID: 6821210
DOI: 10.1007/BF01871590.
Structural responses to voltage-clamping in the toad urinary bladder. II. Granular cells and the natriferic action of vasopressin.
Dibona D, Sherman B, Bobrycki V, MILLS J, Macknight A
J Membr Biol. 1981; 60(1):35-44.
PMID: 6787206
DOI: 10.1007/BF01870830.
The sensitivity of apical Na+ permeability in frog skin to hypertonic stress.
Zeiske W, Van Driessche W
Pflugers Arch. 1984; 400(2):130-9.
PMID: 6326045
DOI: 10.1007/BF00585030.
The effects of anions on sodium transport.
Cuthbert A, PAINTER E, Prince W
Br J Pharmacol. 1969; 36(1):97-106.
PMID: 5768132
PMC: 1703566.
DOI: 10.1111/j.1476-5381.1969.tb08307.x.
Some morphological aspects of active sodium transport. The epithelium of the frog skin.
VOUTE C, USSING H
J Cell Biol. 1968; 36(3):625-38.
PMID: 5645551
PMC: 2107371.
DOI: 10.1083/jcb.36.3.625.
The effect of noradrenaline on the toad skin potential.
House C
J Physiol. 1970; 209(3):513-37.
PMID: 5499796
PMC: 1395549.
DOI: 10.1113/jphysiol.1970.sp009177.
Permeability of urinary bladder of Rana cancrivora to urea in the presence of oxytocin.
Chew M, Elliott A, Wong H
J Physiol. 1972; 223(3):757-72.
PMID: 5045740
PMC: 1331480.
DOI: 10.1113/jphysiol.1972.sp009873.