» Articles » PMID: 14273648

COFACTOR-DEPENDENT ALDOSE DEHYDROGENASE OF RHODOPSEUDOMONAS SPHEROIDES

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1965 Mar 1
PMID 14273648
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Niederpruem, Donald J. (University of California, Berkeley), and Michael Doudoroff. Cofactor-dependent aldose dehydrogenase of Rhodopseudomonas spheroides. J. Bacteriol. 89:697-705. 1965.-Particulate enzyme preparations of cell extracts of Rhodopseudomonas spheroides possess constitutive dehydrogenase and oxidase activities for aldose sugars, reduced nicotinamide adenine dinucleotide (NADH(2)), and succinate. The dehydrogenation of aldoses requires an unidentified cofactor which is not required for the oxidation of succinate nor of NADH(2). The cofactor is present in the particulate fraction of aerobic cells, but is unavailable to the enzyme system. It can be liberated by boiling or by treatment with salts at high concentration. The cofactor also appears in the soluble fraction of aerobic cells, but only after exponential growth has ceased. Extracts of cells grown anaerobically in the light possess the apoenzyme, but not the cofactor, for aldose oxidation. Cofactor activity was found in extracts of Bacterium anitratum (= Moraxella sp.) but not in Escherichia coli, Pseudomonas fluorescens, yeast, or mouse liver. In 0.075 m tris(hydroxymethyl)aminomethane-phosphoric acid buffer (pH 7.3), the oxidation of NADH(2) was stimulated and succinoxidase was inhibited by high salt concentrations.

Citing Articles

Carbohydrate catabolism of Mima polymorpha. II. Abortive catabolism of glucose.

Marus A, Bell E J Bacteriol. 1966; 91(6):2229-36.

PMID: 5943938 PMC: 316199. DOI: 10.1128/jb.91.6.2229-2236.1966.


Pyridine nucleotide-dependent glucose dehydrogenase activity in blue-green algae.

Pulich W, Van Baalen C J Bacteriol. 1973; 114(1):28-33.

PMID: 4144590 PMC: 251736. DOI: 10.1128/jb.114.1.28-33.1973.


Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi).

van Schie B, Hellingwerf K, van Dijken J, Elferink M, van Dijl J, Kuenen J J Bacteriol. 1985; 163(2):493-9.

PMID: 3926746 PMC: 219149. DOI: 10.1128/jb.163.2.493-499.1985.


Physiological significance and bioenergetic aspects of glucose dehydrogenase.

Neijssel O, Hommes R, Postma P, Tempest D Antonie Van Leeuwenhoek. 1989; 56(1):51-61.

PMID: 2549864 DOI: 10.1007/BF00822584.


The separate roles of PQQ and apo-enzyme syntheses in the regulation of glucose dehydrogenase activity in Klebsiella pneumoniae NCTC 418.

Hommes R, Herman P, Postma P, Tempest D, Neijssel O Arch Microbiol. 1989; 151(3):257-60.

PMID: 2539792 DOI: 10.1007/BF00413139.

References
1.
HAUGE J . Purification and properties of glucose dehydrogenase and cytochrome b from Bacterium anitratum. Biochim Biophys Acta. 1960; 45:250-62. DOI: 10.1016/0006-3002(60)91449-9. View

2.
Bean R, HASSID W . Carbohydrate oxidase from A red alga, Iridophycus flaccidum. J Biol Chem. 1956; 218(1):425-36. View

3.
KUSAI K, SEKUZU I, Hagihara B, OKUNUKI K, Yamauchi S, Nakai M . Crystallization of glucose oxidase from Penicillium amagasakiense. Biochim Biophys Acta. 1960; 40:555-7. DOI: 10.1016/0006-3002(60)91406-2. View

4.
Cooper J, Smith W, BACILA M, Medina H . Galactose oxidase from Polyporus circinatus, Fr. J Biol Chem. 1959; 234(3):445-8. View

5.
Szymona M, DOUDOROFF M . Carbohydrate metabolism in Rhodopseudomonas sphreoides. J Gen Microbiol. 1960; 22:167-83. DOI: 10.1099/00221287-22-1-167. View