Cerone M, Roberts M, Smith T
Front Cell Infect Microbiol. 2022; 12:945750.
PMID: 36405970
PMC: 9671073.
DOI: 10.3389/fcimb.2022.945750.
Berezhnoy N, Cazenave-Gassiot A, Gao L, Foo J, Ji S, Regina V
Metabolites. 2022; 12(9).
PMID: 36144187
PMC: 9500627.
DOI: 10.3390/metabo12090784.
Okada S, Taylor M, Zhou X, Naim F, Marshall D, Blanksby S
Front Plant Sci. 2020; 11:30.
PMID: 32117373
PMC: 7020751.
DOI: 10.3389/fpls.2020.00030.
Mishra V, Buter J, Blevins M, Witte M, van Rhijn I, Moody D
Org Lett. 2019; 21(13):5126-5131.
PMID: 31247773
PMC: 6614791.
DOI: 10.1021/acs.orglett.9b01725.
Yu X, Cai Y, Chai J, Schwender J, Shanklin J
Plant Physiol. 2019; 180(3):1351-1361.
PMID: 31123096
PMC: 6752900.
DOI: 10.1104/pp.19.00396.
Biosynthesis, regulation, and engineering of microbially produced branched biofuels.
Bai W, Geng W, Wang S, Zhang F
Biotechnol Biofuels. 2019; 12:84.
PMID: 31011367
PMC: 6461809.
DOI: 10.1186/s13068-019-1424-9.
Discovery of trehalose phospholipids reveals functional convergence with mycobacteria.
Reinink P, Buter J, Mishra V, Ishikawa E, Cheng T, Willemsen P
J Exp Med. 2019; 216(4):757-771.
PMID: 30804000
PMC: 6446866.
DOI: 10.1084/jem.20181812.
Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil.
Yu X, Cahoon R, Horn P, Shi H, Prakash R, Cai Y
Plant Biotechnol J. 2017; 16(4):926-938.
PMID: 28929610
PMC: 5866947.
DOI: 10.1111/pbi.12839.
A rapid ambient ionization-mass spectrometry approach to monitoring the relative abundance of isomeric glycerophospholipids.
Kozlowski R, Mitchell T, Blanksby S
Sci Rep. 2015; 5:9243.
PMID: 25880027
PMC: 4399504.
DOI: 10.1038/srep09243.
Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.
Yu X, Prakash R, Sweet M, Shanklin J
Plant Physiol. 2013; 164(1):455-65.
PMID: 24204024
PMC: 3875821.
DOI: 10.1104/pp.113.230953.
Cyclopropane ring formation in membrane lipids of bacteria.
Grogan D, Cronan Jr J
Microbiol Mol Biol Rev. 1997; 61(4):429-41.
PMID: 9409147
PMC: 232619.
DOI: 10.1128/mmbr.61.4.429-441.1997.
Indentification and localization of the fatty acids in Haemophilus parainfluenzae.
White D, Cox R
J Bacteriol. 1967; 93(3):1079-88.
PMID: 6025415
PMC: 276556.
DOI: 10.1128/jb.93.3.1079-1088.1967.
Cis-11-hexadecenoic acid from Cytophaga hutchinsonii lipids.
Walker R
Lipids. 1969; 4(1):15-8.
PMID: 5773100
DOI: 10.1007/BF02531788.
Methylation of the cellular lipid of methionine-requiring Agrobacterium tumefaciens.
Kaneshiro T
J Bacteriol. 1968; 95(6):2078-82.
PMID: 5669890
PMC: 315137.
DOI: 10.1128/jb.95.6.2078-2082.1968.
Fatty acid synthesis in Escherichia coli.
KNIVETT V, Cullen J
Biochem J. 1967; 103(2):299-306.
PMID: 5340364
PMC: 1270409.
DOI: 10.1042/bj1030299.
Occurrence of lysophosphatides in bacteriophage T4rII-infected Escherichia coli S-6.
BRADLEY W, ASTRACHAN L
J Virol. 1971; 8(4):437-45.
PMID: 5002011
PMC: 376217.
DOI: 10.1128/JVI.8.4.437-445.1971.
The 'free' lipids of Brucella abortus Bang, II. The positional distribution of the phospholipid fatty acids.
Thiele O, Busse D
Experientia. 1968; 24(2):112.
PMID: 4966907
DOI: 10.1007/BF02146926.
Phospholipid alterations during growth of Escherichia coli.
Cronan Jr J
J Bacteriol. 1968; 95(6):2054-61.
PMID: 4876126
PMC: 315134.
DOI: 10.1128/jb.95.6.2054-2061.1968.
The incorporation of 2-aminoethylphosphonic acid into rat liver diacylglyceroaminoethylphosphonate.
Curley J, Henderson T
Lipids. 1972; 7(10):676-9.
PMID: 4635560
DOI: 10.1007/BF02533076.
Proton-enhanced 13C nuclear magnetic resonance of lipids and biomembranes.
Urbina J, Waugh J
Proc Natl Acad Sci U S A. 1974; 71(12):5062-7.
PMID: 4531036
PMC: 434040.
DOI: 10.1073/pnas.71.12.5062.