Frazure M, Greene C, Iceman K, Howland D, Pitts T
Lung. 2024; 202(2):179-187.
PMID: 38538927
PMC: 11135177.
DOI: 10.1007/s00408-024-00672-8.
Suminski A, Rajala A, Birn R, Mueller E, Malone M, Ness J
Bioelectron Med. 2023; 9(1):9.
PMID: 37118841
PMC: 10148417.
DOI: 10.1186/s42234-023-00111-8.
Foote A, Thibeault S
J Speech Lang Hear Res. 2021; 64(2):371-391.
PMID: 33465318
PMC: 8632506.
DOI: 10.1044/2020_JSLHR-20-00350.
Pathak S, Slovarp L, Clary M, Jette M
Chem Senses. 2020; 45(9):823-831.
PMID: 33247587
PMC: 7718607.
DOI: 10.1093/chemse/bjaa069.
Nicolai E, Settell M, Knudsen B, McConico A, Gosink B, Trevathan J
J Neural Eng. 2020; 17(4):046017.
PMID: 32554888
PMC: 7717671.
DOI: 10.1088/1741-2552/ab9db8.
An Airway Protection Program Revealed by Sweeping Genetic Control of Vagal Afferents.
Prescott S, Umans B, Williams E, Brust R, Liberles S
Cell. 2020; 181(3):574-589.e14.
PMID: 32259485
PMC: 7197391.
DOI: 10.1016/j.cell.2020.03.004.
Liquiritin apioside attenuates laryngeal chemoreflex but not mechanoreflex in rat pups.
Wei W, Gao X, Zhao L, Zhuang J, Jiao Y, Xu F
Am J Physiol Lung Cell Mol Physiol. 2019; 318(1):L89-L97.
PMID: 31617735
PMC: 6985871.
DOI: 10.1152/ajplung.00306.2019.
Voice-related modulation of mechanosensory detection thresholds in the human larynx.
Hammer M, Krueger M
Exp Brain Res. 2013; 232(1):13-20.
PMID: 24217976
PMC: 3979554.
DOI: 10.1007/s00221-013-3703-1.
Sensory input pathways and mechanisms in swallowing: a review.
Steele C, Miller A
Dysphagia. 2010; 25(4):323-33.
PMID: 20814803
PMC: 2992653.
DOI: 10.1007/s00455-010-9301-5.
Laryngeal somatosensory deficits in Parkinson's disease: implications for speech respiratory and phonatory control.
Hammer M, Barlow S
Exp Brain Res. 2009; 201(3):401-9.
PMID: 20012947
PMC: 2834233.
DOI: 10.1007/s00221-009-2048-2.
Design of a new somatosensory stimulus delivery device for measuring laryngeal mechanosensory detection thresholds in humans.
Hammer M
IEEE Trans Biomed Eng. 2009; 56(4):1154-9.
PMID: 19272888
PMC: 2680699.
DOI: 10.1109/TBME.2008.2007968.
Sensory regulation of swallowing and airway protection: a role for the internal superior laryngeal nerve in humans.
Jafari S, Prince R, Kim D, Paydarfar D
J Physiol. 2003; 550(Pt 1):287-304.
PMID: 12754311
PMC: 2343009.
DOI: 10.1113/jphysiol.2003.039966.
Inhibition of inspiratory motor output by high-frequency low-pressure oscillations in the upper airway of sleeping dogs.
Eastwood P, Satoh M, Curran A, Zayas M, Smith C, Dempsey J
J Physiol. 1999; 517 ( Pt 1):259-71.
PMID: 10226164
PMC: 2269329.
DOI: 10.1111/j.1469-7793.1999.0259z.x.
Thermomechanical facilitation of swallowing evoked by electrical nerve stimulation in cats.
Capra N, McCall G
Dysphagia. 1994; 9(3):149-55.
PMID: 8082322
DOI: 10.1007/BF00341258.
The morphological and functional characteristics of the innervation of the subglottic mucosa of the larynx.
Adzaku F
Ann R Coll Surg Engl. 1980; 62(6):426-31.
PMID: 7436302
PMC: 2493783.
Activity of lingual, laryngeal and oesophageal receptors in conscious sheep.
Falempin M, Rousseau J
J Physiol. 1984; 347:47-58.
PMID: 6707965
PMC: 1199433.
DOI: 10.1113/jphysiol.1984.sp015052.
Types of nervous activity which may be recorded from the carotid sinus nerve in the sheep foetus.
BISCOE T, PURVES M, Sampson S
J Physiol. 1969; 202(1):1-23.
PMID: 5814220
PMC: 1351462.
DOI: 10.1113/jphysiol.1969.sp008792.
An analysis of the inhibition of phrenic motoneurones which occurs on stimulation of some cranial nerve afferents.
BISCOE T, Sampson S
J Physiol. 1970; 209(2):375-93.
PMID: 5499533
PMC: 1395745.
DOI: 10.1113/jphysiol.1970.sp009170.
[Cardiovascular and respiratory vagal mechanoreceptors in the cat].
Mei N
Exp Brain Res. 1970; 11(5):480-501.
PMID: 5490688
The response of laryngeal afferent fibres to mechanical and chemical stimuli.
Boushey H, Richardson P, Widdicombe J, WISE J
J Physiol. 1974; 240(1):153-75.
PMID: 4855058
PMC: 1330987.
DOI: 10.1113/jphysiol.1974.sp010605.