» Articles » PMID: 14047225

METABOLISM OF OMEGA-AMINO ACIDS. V. ENERGETICS OF THE GAMMA-AMINOBUTYRATE FERMENTATION BY CLOSTRIDIUM AMINOBUTYRICUM

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1963 Jun 1
PMID 14047225
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Hardman, John K. (National Heart Institute, National Institutes of Health, Bethesda, Md.) and Thressa C. Stadtman. Metabolism of omega-amino acids. V. Energetics of the gamma-aminobutyrate fermentation by Clostridium aminobutyricum. J. Bacteriol. 85:1326-1333. 1963.-Clostridium aminobutyricum utilizes gamma-aminobutyrate as its sole carbon, nitrogen, and energy source, producing ammonia, acetate, and butyrate as a result of this fermentation. Coenzyme A (CoA)-transferase, phosphotransacetylase, and acetokinase activities have been demonstrated in crude extracts of the organism; the coupling of the reactions catalyzed by these enzymes to the fermentation reactions provides a mechanism whereby C. aminobutyricum can obtain energy, in the form of adenosine triphosphate, from the decomposition of gamma-aminobutyrate. Indirect evidence of additional phosphorylation, at the electron-transport level, has been obtained from molar growth yield studies and from the inhibition by 2,4-dinitrophenol of butyrate synthesis from gamma-aminobutyrate and from crotonyl-CoA.

Citing Articles

Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway.

Mayer J, Cook A J Bacteriol. 2009; 191(19):6052-8.

PMID: 19648235 PMC: 2747907. DOI: 10.1128/JB.00678-09.


Syntrophic degradation of cadaverine by a defined methanogenic coculture.

Roeder J, Schink B Appl Environ Microbiol. 2009; 75(14):4821-8.

PMID: 19465531 PMC: 2708416. DOI: 10.1128/AEM.00342-09.


Energy conservation via electron-transferring flavoprotein in anaerobic bacteria.

Herrmann G, Jayamani E, Mai G, Buckel W J Bacteriol. 2007; 190(3):784-91.

PMID: 18039764 PMC: 2223574. DOI: 10.1128/JB.01422-07.


Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants.

Dover S, HALPERN Y J Bacteriol. 1972; 109(2):835-43.

PMID: 4550821 PMC: 285213. DOI: 10.1128/jb.109.2.835-843.1972.


Acetone-butanol fermentation revisited.

Jones D, Woods D Microbiol Rev. 1986; 50(4):484-524.

PMID: 3540574 PMC: 373084. DOI: 10.1128/mr.50.4.484-524.1986.


References
1.
Lynen F, Ochoa S . Enzymes of fatty acid metabolism. Biochim Biophys Acta. 1953; 12(1-2):299-314. DOI: 10.1016/0006-3002(53)90149-8. View

2.
Mahler H . Studies on the fatty acid oxidizing system of animal tissues. IV. The prosthetic group of butyryl coenzyme A dehydrogenase. J Biol Chem. 1954; 206(1):13-26. View

3.
Crane F, Mii S, HAUGE J, Green D, BEINERT H . On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. I. The general fatty acyl coenzyme A dehydrogenase. J Biol Chem. 1956; 218(2):701-6. View

4.
SOKATCH J, GUNSALUS I . Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. J Bacteriol. 1957; 73(4):452-60. PMC: 314600. DOI: 10.1128/jb.73.4.452-460.1957. View

5.
Bauchop T, ELSDEN S . The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960; 23:457-69. DOI: 10.1099/00221287-23-3-457. View