Yang J, Zhang J, Zhu Z, Jiang X, Zheng T, Du G
Appl Microbiol Biotechnol. 2022; 106(22):7577-7594.
PMID: 36326840
DOI: 10.1007/s00253-022-12241-1.
Niazy A, Hughes L
Curr Microbiol. 2015; 71(2):229-34.
PMID: 25917504
DOI: 10.1007/s00284-015-0826-6.
Loison G, Losson R, Lacroute F
Curr Genet. 2013; 2(1):39-44.
PMID: 24189721
DOI: 10.1007/BF00445692.
Fox B, Ristuccia J, Bzik D
Int J Parasitol. 2008; 39(5):533-9.
PMID: 18992249
PMC: 3682482.
DOI: 10.1016/j.ijpara.2008.09.011.
Turnbough Jr C, Switzer R
Microbiol Mol Biol Rev. 2008; 72(2):266-300, table of contents.
PMID: 18535147
PMC: 2415746.
DOI: 10.1128/MMBR.00001-08.
sacB-5-Fluoroorotic acid-pyrE-based bidirectional selection for integration of unmarked alleles into the chromosome of Rhodobacter capsulatus.
Yano T, Sanders C, Catalano J, Daldal F
Appl Environ Microbiol. 2005; 71(6):3014-24.
PMID: 15932997
PMC: 1151845.
DOI: 10.1128/AEM.71.6.3014-3024.2005.
THE GENETIC MAP OF ESCHERICHIA COLI K-12.
Taylor A, THOMAN M
Genetics. 1964; 50:659-77.
PMID: 14221874
PMC: 1210685.
DOI: 10.1093/genetics/50.4.659.
CLUSTERING OF FUNCTIONALLY RELATED GENES IN SALMONELLA TYPHIMURIUM.
DEMEREC M
Proc Natl Acad Sci U S A. 1964; 51:1057-60.
PMID: 14215626
PMC: 300211.
DOI: 10.1073/pnas.51.6.1057.
ENZYMES OF THE PYRIMIDINE PATHWAY IN ESCHERICHIA COLI. I. SYNTHESIS BY CELLS AND SPHEROPLASTS.
Taylor W, NOVELLI G
J Bacteriol. 1964; 88:99-104.
PMID: 14197912
PMC: 277263.
DOI: 10.1128/jb.88.1.99-104.1964.
ENZYMES OF THE PYRIMIDINE PATHWAY IN ESCHERICHIA COLI. II. INTRACELLULAR LOCALIZATION AND PROPERTIES OF DIHYDROOROTIC DEHYDROGENASE.
Taylor W, Taylor M
J Bacteriol. 1964; 88:105-10.
PMID: 14197872
PMC: 277264.
DOI: 10.1128/jb.88.1.105-110.1964.
CONTROL OF URACIL SYNTHESIS BY ARGININE IN ESCHERICHIA COLI.
BEN-ISHAI R, Lahav M, Zamir A
J Bacteriol. 1964; 87:1436-42.
PMID: 14188725
PMC: 277222.
DOI: 10.1128/jb.87.6.1436-1442.1964.
Symposium on multiple forms of enzymes and control mechanisms. III. Control by repression of a biochemical pathway.
GORINI L
Bacteriol Rev. 1963; 27:182-90.
PMID: 13949286
PMC: 441178.
DOI: 10.1128/br.27.2.182-190.1963.
Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
Sato T, Fukui T, Atomi H, Imanaka T
J Bacteriol. 2002; 185(1):210-20.
PMID: 12486058
PMC: 141832.
DOI: 10.1128/JB.185.1.210-220.2003.
Molecular analysis of de novo pyrimidine synthesis in solanaceous species.
Giermann N, Schroder M, Ritter T, Zrenner R
Plant Mol Biol. 2002; 50(3):393-403.
PMID: 12369616
DOI: 10.1023/a:1019854531254.
Fluoroorotic acid-selected Nicotiana plumbaginifolia cell lines with a stable thymine starvation phenotype have lost the thymine-regulated transcriptional program.
Santoso D, Thornburg R
Plant Physiol. 2000; 123(4):1517-24.
PMID: 10938367
PMC: 59107.
DOI: 10.1104/pp.123.4.1517.
Genetic responses of the thermophilic archaeon Sulfolobus acidocaldarius to short-wavelength UV light.
Wood E, Ghane F, Grogan D
J Bacteriol. 1997; 179(18):5693-8.
PMID: 9294423
PMC: 179455.
DOI: 10.1128/jb.179.18.5693-5698.1997.
Selfish operons: horizontal transfer may drive the evolution of gene clusters.
Lawrence J, Roth J
Genetics. 1996; 143(4):1843-60.
PMID: 8844169
PMC: 1207444.
DOI: 10.1093/genetics/143.4.1843.
Pyrimidine biosynthesis genes (pyrE and pyrF) of an extreme thermophile, Thermus thermophilus.
Yamagishi A, Tanimoto T, Suzuki T, Oshima T
Appl Environ Microbiol. 1996; 62(6):2191-4.
PMID: 8787418
PMC: 167999.
DOI: 10.1128/aem.62.6.2191-2194.1996.
High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid.
Iborra F
Curr Genet. 1993; 24(1-2):181-3.
PMID: 8358827
DOI: 10.1007/BF00324685.
Control of the pyrimidine biosynthetic pathway in Pseudomonas pseudoalcaligenes.
West T
Arch Microbiol. 1994; 162(1-2):75-9.
PMID: 7916185
DOI: 10.1007/BF00264376.