Hansson K, Eftestol E
Mol Biol Cell. 2023; 34(8).
PMID: 37339435
PMC: 10398882.
DOI: 10.1091/mbc.E22-09-0424.
Phan T, He C, Loladze I, Prater C, Elser J, Kuang Y
Heliyon. 2022; 8(7):e09820.
PMID: 35800243
PMC: 9254350.
DOI: 10.1016/j.heliyon.2022.e09820.
Szydlo K, Ignatova Z, Gorochowski T
ACS Synth Biol. 2022; 11(3):1049-1059.
PMID: 35174698
PMC: 9097571.
DOI: 10.1021/acssynbio.1c00490.
Correddu D, Montano Lopez J, Vadakkedath P, Lai A, Pernes J, Watson P
Sci Rep. 2019; 9(1):8884.
PMID: 31222068
PMC: 6586885.
DOI: 10.1038/s41598-019-45323-8.
Niess A, Siemann-Herzberg M, Takors R
Microb Cell Fact. 2019; 18(1):8.
PMID: 30654806
PMC: 6337870.
DOI: 10.1186/s12934-019-1057-5.
Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions.
Brown C, Sridhara V, Boutz D, Person M, Marcotte E, Barrick J
BMC Genomics. 2017; 18(1):301.
PMID: 28412930
PMC: 5392934.
DOI: 10.1186/s12864-017-3676-8.
[FeFe]-hydrogenase abundance and diversity along a vertical redox gradient in Great Salt Lake, USA.
Boyd E, Hamilton T, Swanson K, Howells A, Baxter B, Meuser J
Int J Mol Sci. 2014; 15(12):21947-66.
PMID: 25464382
PMC: 4284687.
DOI: 10.3390/ijms151221947.
The relationship of the "sphere chromatophile" to the fate of displaced histones following histone transition in rat spermiogenesis.
Vaughn J
J Cell Biol. 2009; 31(2):257-78.
PMID: 19866700
PMC: 2107053.
DOI: 10.1083/jcb.31.2.257.
[FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community.
Boyd E, Spear J, Peters J
Appl Environ Microbiol. 2009; 75(13):4620-3.
PMID: 19429563
PMC: 2704818.
DOI: 10.1128/AEM.00582-09.
Properties of ribosomal proteins from two mammalian sources.
COHN P
Biochem J. 1967; 102(3):735-41.
PMID: 16742487
PMC: 1270321.
DOI: 10.1042/bj1020735.
Purification, primary structure, and homology relationships of a chloroplast ribosomal protein.
Bartsch M, Kimura M, Subramanian A
Proc Natl Acad Sci U S A. 1982; 79(22):6871-5.
PMID: 16593249
PMC: 347235.
DOI: 10.1073/pnas.79.22.6871.
Bacterial ribosome.
Nomura M
Bacteriol Rev. 1970; 34(3):228-77.
PMID: 16350216
PMC: 378356.
DOI: 10.1128/br.34.3.228-277.1970.
ACCUMULATION OF RIBONUCLEOPROTEIN PARTICLES IN A RELAXED MUTANT OF ESCHERICHIA COLI.
Sypherd P
J Bacteriol. 1965; 90:403-10.
PMID: 14329453
PMC: 315658.
DOI: 10.1128/jb.90.2.403-410.1965.
THE ACCUMULATION OF RIBONUCLEIC ACID BY A MUTANT OF ESCHERICHIA COLI.
DAGLEY S, TURNOCK G, Wild D
Biochem J. 1963; 88:555-66.
PMID: 14071530
PMC: 1202215.
DOI: 10.1042/bj0880555.
BASIC AND OTHER PROTEINS IN MICROSOMES OF RAT LIVER.
COHN P, Simson P
Biochem J. 1963; 88:206-12.
PMID: 14063858
PMC: 1202098.
DOI: 10.1042/bj0880206.
Synthesis and function of ribonucleic acid polymerase and ribosomes in Escherichia coli B/r after a nutritional shift-up.
Shepherd N, Churchward G, Bremer H
J Bacteriol. 1980; 143(3):1332-44.
PMID: 6157673
PMC: 294508.
DOI: 10.1128/jb.143.3.1332-1344.1980.
Synthesis and activity of ribonucleic acid polymerase in Escherichia coli.
Shepherd N, Churchward G, Bremer H
J Bacteriol. 1980; 141(3):1098-108.
PMID: 6154044
PMC: 293788.
DOI: 10.1128/jb.141.3.1098-1108.1980.
Magnesium starvation of Aerobacter aerogenes. 3. Protein metabolism.
MARCHESI S, Kennell D
J Bacteriol. 1967; 93(1):357-66.
PMID: 6020412
PMC: 315008.
DOI: 10.1128/jb.93.1.357-366.1967.
Ribonucleic acid and ribosomes of Bacillus stearothermophilus.
Saunders G, Campbell L
J Bacteriol. 1966; 91(1):332-9.
PMID: 5903099
PMC: 315952.
DOI: 10.1128/jb.91.1.332-339.1966.
Ribosomal proteins of Escherichia coli. I. Demonstration of different primary structures.
Traut R, Moore P, Delius H, NOLLER H, TISSIERES A
Proc Natl Acad Sci U S A. 1967; 57(5):1294-301.
PMID: 5341237
PMC: 224471.
DOI: 10.1073/pnas.57.5.1294.