» Articles » PMID: 1385385

How a Mutation in the Gene Encoding Sigma 70 Suppresses the Defective Heat Shock Response Caused by a Mutation in the Gene Encoding Sigma 32

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1992 Nov 1
PMID 1385385
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

In Escherichia coli, transcription of the heat shock genes is regulated by sigma 32, the alternative sigma factor directing RNA polymerase to heat shock promoters. sigma 32, encoded by rpoH (htpR), is normally present in limiting amounts in cells. Upon temperature upshift, the amount of sigma 32 transiently increases, resulting in the transient increase in transcription of the heat shock genes known as the heat shock response. Strains carrying the rpoH165 nonsense mutation and supC(Ts), a temperature-sensitive suppressor tRNA, do not exhibit a heat shock response. This defect is suppressed by rpoD800, a mutation in the gene encoding sigma 70. We have determined the mechanism of suppression. In contrast to wild-type strains, the level of sigma 32 and the level of transcription of heat shock genes remain relatively constant in an rpoH165 rpoD800 strain after a temperature upshift. Instead, the heat shock response in this strain results from an approximately fivefold decrease in the cellular transcription carried out by the RNA polymerase holoenzyme containing mutant RpoD800 sigma 70 coupled with an overall increase in the translational efficiency of all mRNA species.

Citing Articles

Modulation of the E. coli rpoH Temperature Sensor with Triptycene-Based Small Molecules.

Barros S, Yoon I, Chenoweth D Angew Chem Int Ed Engl. 2016; 55(29):8258-61.

PMID: 27240201 PMC: 5056428. DOI: 10.1002/anie.201601626.


A model for sigma factor competition in bacterial cells.

Mauri M, Klumpp S PLoS Comput Biol. 2014; 10(10):e1003845.

PMID: 25299042 PMC: 4191881. DOI: 10.1371/journal.pcbi.1003845.


Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA.

Grigorova I, Phleger N, Mutalik V, Gross C Proc Natl Acad Sci U S A. 2006; 103(14):5332-7.

PMID: 16567622 PMC: 1459355. DOI: 10.1073/pnas.0600828103.


Genotype-by-environment interactions influencing the emergence of rpoS mutations in Escherichia coli populations.

King T, Seeto S, Ferenci T Genetics. 2006; 172(4):2071-9.

PMID: 16489226 PMC: 1456365. DOI: 10.1534/genetics.105.053892.


Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations.

Mooney R, Landick R Genes Dev. 2003; 17(22):2839-51.

PMID: 14630944 PMC: 280631. DOI: 10.1101/gad.1142203.


References
1.
Gross C, Hoffman J, Ward C, Hager D, Burdick G, Berger H . Mutation affecting thermostability of sigma subunit of Escherichia coli RNA polymerase lies near the dnaG locus at about 66 min on the E. coli genetic map. Proc Natl Acad Sci U S A. 1978; 75(1):427-31. PMC: 411262. DOI: 10.1073/pnas.75.1.427. View

2.
Gourse R, Takebe Y, Sharrock R, Nomura M . Feedback regulation of rRNA and tRNA synthesis and accumulation of free ribosomes after conditional expression of rRNA genes. Proc Natl Acad Sci U S A. 1985; 82(4):1069-73. PMC: 397195. DOI: 10.1073/pnas.82.4.1069. View

3.
Nagai H, Yuzawa H, Yura T . Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci U S A. 1991; 88(23):10515-9. PMC: 52959. DOI: 10.1073/pnas.88.23.10515. View

4.
Zhou Y, Kusukawa N, Erickson J, Gross C, Yura T . Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J Bacteriol. 1988; 170(8):3640-9. PMC: 211339. DOI: 10.1128/jb.170.8.3640-3649.1988. View

5.
Yano R, Imai M, Yura T . The use of operon fusions in studies of the heat-shock response: effects of altered sigma 32 on heat-shock promoter function in Escherichia coli. Mol Gen Genet. 1987; 207(1):24-8. DOI: 10.1007/BF00331486. View