Boothalingam S, Peterson A, Powell L, Easwar V
Sci Rep. 2023; 13(1):12693.
PMID: 37542191
PMC: 10403563.
DOI: 10.1038/s41598-023-39850-8.
Prakash P, Sreedhar A, Umashankar A, Prabhu P
Indian J Otolaryngol Head Neck Surg. 2023; 75(2):685-691.
PMID: 37275046
PMC: 10234946.
DOI: 10.1007/s12070-022-03420-7.
Jennings S, Aviles E
J Acoust Soc Am. 2023; 153(3):1723.
PMID: 37002081
PMC: 10019909.
DOI: 10.1121/10.0017604.
Jennings S, Dominguez J
J Assoc Res Otolaryngol. 2022; 23(3):365-378.
PMID: 35254540
PMC: 9085988.
DOI: 10.1007/s10162-022-00841-7.
Lopez-Poveda E
Front Neurol. 2018; 9:197.
PMID: 29632514
PMC: 5879449.
DOI: 10.3389/fneur.2018.00197.
Efferent modulation of pre-neural and neural distortion products.
Smith S, Ichiba K, Velenovsky D, Cone B
Hear Res. 2017; 356:25-34.
PMID: 29122423
PMC: 5705265.
DOI: 10.1016/j.heares.2017.10.009.
Stronger efferent suppression of cochlear neural potentials by contralateral acoustic stimulation in awake than in anesthetized chinchilla.
Aedo C, Tapia E, Pavez E, Elgueda D, Delano P, Robles L
Front Syst Neurosci. 2015; 9:21.
PMID: 25784861
PMC: 4345911.
DOI: 10.3389/fnsys.2015.00021.
Auditory cortex basal activity modulates cochlear responses in chinchillas.
Leon A, Elgueda D, Silva M, Hamame C, Delano P
PLoS One. 2012; 7(4):e36203.
PMID: 22558383
PMC: 3340362.
DOI: 10.1371/journal.pone.0036203.
Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla.
Elgueda D, Delano P, Robles L
J Assoc Res Otolaryngol. 2011; 12(3):317-27.
PMID: 21365333
PMC: 3085692.
DOI: 10.1007/s10162-011-0260-9.
Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing.
Cheatham M, Naik K, Dallos P
J Assoc Res Otolaryngol. 2010; 12(1):113-25.
PMID: 20957507
PMC: 3015034.
DOI: 10.1007/s10162-010-0240-5.
Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas.
Delano P, Elgueda D, Hamame C, Robles L
J Neurosci. 2007; 27(15):4146-53.
PMID: 17428992
PMC: 6672531.
DOI: 10.1523/JNEUROSCI.3702-06.2007.
Hair cells--beyond the transducer.
Housley G, Marcotti W, Navaratnam D, Yamoah E
J Membr Biol. 2006; 209(2-3):89-118.
PMID: 16773496
DOI: 10.1007/s00232-005-0835-7.
[HEARING DISORDERS AND DISTURBANCES OF THE OLFACTORY SYSTEM IN INTRACRANIAL DISEASES].
HOMMERICH K
Arch Ohren Nasen Kehlkopfheilkd. 1964; 183:86-124.
PMID: 14336757
[CONTROL OF HEARING ADAPTATION BY SOUND DIRECTION TO THE OPPOSITE EAR].
BURGHOFF H
Arch Ohren Nasen Kehlkopfheilkd. 1963; 181:437-46.
PMID: 14107697
[New aspects of the biology and pathology of the internal ear].
VOSTEEN K
Arch Ohren Nasen Kehlkopfheilkd. 1961; 178:1-104.
PMID: 13782179
Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales.
Sridhar T, Brown M, Sewell W
J Neurosci. 1997; 17(1):428-37.
PMID: 8987768
PMC: 6793716.
The efferent-mediated suppression of otoacoustic emissions in awake guinea pigs and its reversible blockage by gentamicin.
Avan P, Erre J, da Costa D, Aran J, Popelar J
Exp Brain Res. 1996; 109(1):9-16.
PMID: 8740203
DOI: 10.1007/BF00228621.
Effects of efferent stimulation on the saccule of goldfish.
Furukawa T
J Physiol. 1981; 315:203-15.
PMID: 7310707
PMC: 1249377.
DOI: 10.1113/jphysiol.1981.sp013742.
The influence of the effect system on adaptation, temporary and permanent threshold shift.
Handrock M, Zeisberg J
Arch Otorhinolaryngol. 1982; 234(2):191-5.
PMID: 7092707
DOI: 10.1007/BF00453630.
Efferent control of cochlear inner hair cell responses in the guinea-pig.
Brown M, Nuttall A
J Physiol. 1984; 354:625-46.
PMID: 6481647
PMC: 1193432.
DOI: 10.1113/jphysiol.1984.sp015396.