Baytas O, Davidson S, Kauer J, Morrow E
Mol Brain. 2024; 17(1):87.
PMID: 39604975
PMC: 11600823.
DOI: 10.1186/s13041-024-01154-x.
Zhu F, Hu S, Mei L
Front Nutr. 2024; 11:1404743.
PMID: 38784135
PMC: 11112111.
DOI: 10.3389/fnut.2024.1404743.
Mishra V, Gahlowt P, Singh S, Dubey N, Singh S, Tripathi D
Plant Signal Behav. 2023; 18(1):2163343.
PMID: 36655720
PMC: 9858539.
DOI: 10.1080/15592324.2022.2163343.
Liu Y, Liu X, Dong X, Yan J, Xie Z, Luo Y
Front Plant Sci. 2022; 13:926850.
PMID: 36046585
PMC: 9423025.
DOI: 10.3389/fpls.2022.926850.
Wu Q, Su N, Huang X, Cui J, Shabala L, Zhou M
Plant Commun. 2021; 2(3):100188.
PMID: 34027398
PMC: 8132176.
DOI: 10.1016/j.xplc.2021.100188.
Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review.
Hepsomali P, Groeger J, Nishihira J, Scholey A
Front Neurosci. 2020; 14:923.
PMID: 33041752
PMC: 7527439.
DOI: 10.3389/fnins.2020.00923.
An In Vivo Targeted Deletion of the Calmodulin-Binding Domain from Rice Glutamate Decarboxylase 3 (OsGAD3) Increases γ-Aminobutyric Acid Content in Grains.
Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S
Rice (N Y). 2020; 13(1):20.
PMID: 32180062
PMC: 7076103.
DOI: 10.1186/s12284-020-00380-w.
A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes.
Sarasa S, Mahendran R, Muthusamy G, Thankappan B, Femil Selta D, Angayarkanni J
Curr Microbiol. 2019; 77(4):534-544.
PMID: 31844936
DOI: 10.1007/s00284-019-01839-w.
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease.
Govindpani K, Guzman B, Vinnakota C, Waldvogel H, Faull R, Kwakowsky A
Int J Mol Sci. 2017; 18(8).
PMID: 28825683
PMC: 5578199.
DOI: 10.3390/ijms18081813.
Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?.
Michaeli S, Fromm H
Front Plant Sci. 2015; 6:419.
PMID: 26106401
PMC: 4460296.
DOI: 10.3389/fpls.2015.00419.
GABA--the quintessential neurotransmitter: electroneutrality, fidelity, specificity, and a model for the ligand binding site of GABAA receptors.
Roberts E, Sherman M
Neurochem Res. 1993; 18(4):365-76.
PMID: 8386333
DOI: 10.1007/BF00967239.
Cellular compartments of GABA in brain and their relationship to anticonvulsant activity.
Iadarola M, Gale K
Mol Cell Biochem. 1981; 39:305-29.
PMID: 6273710
DOI: 10.1007/BF00232582.
Pharmacology of cortical inhibition.
Krnjevic K, Randic M, Straughan D
J Physiol. 1966; 184(1):78-105.
PMID: 4958617
PMC: 1357548.
DOI: 10.1113/jphysiol.1966.sp007904.
Glutamate and GABA levels and glutamate decarboxylase activity in brain regions of rats after prolonged treatment with alkali cations.
Gottesfeld Z, Samuel D, Icekson Y
Experientia. 1973; 29(1):68-9.
PMID: 4729459
DOI: 10.1007/BF01913257.
Uptake and release of glutamate in cerebral-cortex slices from the rat.
Okamoto K, QUASTEL J
Biochem J. 1972; 128(5):1117-24.
PMID: 4643696
PMC: 1174000.
DOI: 10.1042/bj1281117.
The release of gamma-aminobutyric acid during inhibition in the cat visual cortex.
Iversen L, Mitchell J, Srinivasan V
J Physiol. 1971; 212(2):519-34.
PMID: 4323309
PMC: 1395671.
DOI: 10.1113/jphysiol.1971.sp009339.
[Cleavage of various naphthol carboxylic acid esters by esterases in the tanycyte ependyma of the 3d ventricle of Wistar rats].
GOSLAR H, Bock R
Histochemie. 1970; 21(4):353-65.
PMID: 4314586
DOI: 10.1007/BF00280904.
Neurochemical correlates of alloxan diabetes: gamma amino butyric acid of amphibian brain.
Nayeemunnisa , Nagaraj J
Experientia. 1977; 33(9):1186-7.
PMID: 891869
DOI: 10.1007/BF01922318.