Lamb J, Forfang K, Hohmann-Marriott M
PLoS One. 2015; 10(7):e0132258.
PMID: 26177548
PMC: 4503352.
DOI: 10.1371/journal.pone.0132258.
Wittmershaus B, Woolf V, Vermaas W
Photosynth Res. 2014; 31(2):75-87.
PMID: 24407980
DOI: 10.1007/BF00028785.
Woolf V, Wittmershaus B, Vermaas W, Tran T
Photosynth Res. 2013; 40(1):21-34.
PMID: 24311211
DOI: 10.1007/BF00019042.
Wittmershaus B, Berns D, Huang C
Biophys J. 2009; 52(5):829-36.
PMID: 19431711
PMC: 1330186.
DOI: 10.1016/S0006-3495(87)83276-9.
Mullet J, Burke J, Arntzen C
Plant Physiol. 1980; 65(5):814-22.
PMID: 16661288
PMC: 440430.
DOI: 10.1104/pp.65.5.814.
Low temperature spectral properties of subchloroplast fractions purified from spinach.
Satoh K, Butler W
Plant Physiol. 1978; 61(3):373-9.
PMID: 16660296
PMC: 1091871.
DOI: 10.1104/pp.61.3.373.
Photochemical properties of mesophyll and bundle sheath chloroplasts of maize.
Bazzaz M, Govindjee
Plant Physiol. 1973; 52(3):257-62.
PMID: 16658543
PMC: 366481.
DOI: 10.1104/pp.52.3.257.
Spectral, Physical, and Electron Transport Activities in the Photosynthetic Apparatus of Mesophyll Cells and Bundle Sheath Cells of Digitaria sanguinalis (L.) Scop.
Mayne B
Plant Physiol. 1971; 47(5):600-5.
PMID: 16657669
PMC: 396735.
DOI: 10.1104/pp.47.5.600.
Formation of chlorophyll B, and the fluorescence properties and photochemical activities of isolated plastids from greening pea seedlings.
Thorne S, BOARDMAN N
Plant Physiol. 1971; 47(2):252-61.
PMID: 16657605
PMC: 365851.
DOI: 10.1104/pp.47.2.252.
Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation.
Wilhelm C, Jakob T
Photosynth Res. 2006; 87(3):323-9.
PMID: 16416051
DOI: 10.1007/s11120-005-9002-3.
Excitation energy transfer in Photosystem I from oxygenic organisms.
Melkozernov A
Photosynth Res. 2005; 70(2):129-53.
PMID: 16228348
DOI: 10.1023/A:1017909325669.
Light-harvesting features revealed by the structure of plant photosystem I.
Ben-Shem A, Frolow F, Nelson N
Photosynth Res. 2005; 81(3):239-50.
PMID: 16034530
DOI: 10.1023/B:PRES.0000036881.23512.42.
In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization.
Schmid V, Cammarata K, Bruns B, Schmidt G
Proc Natl Acad Sci U S A. 1997; 94(14):7667-72.
PMID: 11038558
PMC: 23880.
DOI: 10.1073/pnas.94.14.7667.
Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes.
Trinkunas G, Holzwarth A
Biophys J. 1994; 66(2 Pt 1):415-29.
PMID: 8161695
PMC: 1275709.
DOI: 10.1016/s0006-3495(94)80792-1.
Excited state dynamics in chlorophyll-based antennae: the role of transfer equilibrium.
Laible P, Zipfel W, Owens T
Biophys J. 1994; 66(3 Pt 1):844-60.
PMID: 8011917
PMC: 1275783.
DOI: 10.1016/s0006-3495(94)80861-6.
Structure of the red fluorescence band in chloroplasts.
Govindjee , Yang L
J Gen Physiol. 1966; 49(4):763-80.
PMID: 5943613
PMC: 2195512.
DOI: 10.1085/jgp.49.4.763.
Low-temperature fluorescence excitation spectra for long-wavelength emission as a function of greening in Euglena gracilis and chlorophyll A concentration in vitro: a mathematical model to describe both systems.
Brody S
Biophys J. 1968; 8(2):210-30.
PMID: 5639936
PMC: 1367373.
DOI: 10.1016/S0006-3495(68)86486-0.
Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts.
BOARDMAN N, Thorne S, Anderson J
Proc Natl Acad Sci U S A. 1966; 56(2):586-93.
PMID: 5229980
PMC: 224413.
DOI: 10.1073/pnas.56.2.586.
Direct and indirect mechanisms of deaggregation by fatty acids in chlorophyll-countaining systems.
Brody M, Nathanson B
Biophys J. 1972; 12(7):774-90.
PMID: 5037336
PMC: 1484257.
DOI: 10.1016/s0006-3495(72)86121-6.