Pungor J, Niell C
Curr Biol. 2023; 33(20):R1106-R1118.
PMID: 37875093
PMC: 10664291.
DOI: 10.1016/j.cub.2023.08.093.
Pungor J, Allen V, Songco-Casey J, Niell C
Curr Biol. 2023; 33(13):2784-2793.e3.
PMID: 37343556
PMC: 11056276.
DOI: 10.1016/j.cub.2023.05.069.
Nahmad-Rohen L, Qureshi Y, Vorobyev M
Vision (Basel). 2022; 6(4).
PMID: 36278671
PMC: 9590006.
DOI: 10.3390/vision6040059.
Brady P, Cummings M, Gruev V, Hernandez T, Blair S, Vail A
J R Soc Interface. 2021; 18(184):20210703.
PMID: 34814730
PMC: 8611331.
DOI: 10.1098/rsif.2021.0703.
Nahmad-Rohen L, Vorobyev M
Front Physiol. 2020; 11:379.
PMID: 32425808
PMC: 7212343.
DOI: 10.3389/fphys.2020.00379.
The Eye of the Common Octopus ().
Hanke F, Kelber A
Front Physiol. 2020; 10:1637.
PMID: 32009987
PMC: 6971404.
DOI: 10.3389/fphys.2019.01637.
Pioneering Studies on Cephalopod's Eye and Vision at the Stazione Zoologica Anton Dohrn (1883-1977).
Droscher A
Front Physiol. 2017; 7:618.
PMID: 28066256
PMC: 5179557.
DOI: 10.3389/fphys.2016.00618.
Can chromatic aberration enable color vision in natural environments?.
Gagnon Y, Osorio D, Wardill T, Marshall N, Chung W, Temple S
Proc Natl Acad Sci U S A. 2016; 113(45):E6908-E6909.
PMID: 27803335
PMC: 5111642.
DOI: 10.1073/pnas.1612239113.
Comparative visual ecology of cephalopods from different habitats.
Chung W, Marshall N
Proc Biol Sci. 2016; 283(1838).
PMID: 27629028
PMC: 5031660.
DOI: 10.1098/rspb.2016.1346.
Spectral discrimination in color blind animals via chromatic aberration and pupil shape.
Stubbs A, Stubbs C
Proc Natl Acad Sci U S A. 2016; 113(29):8206-11.
PMID: 27382180
PMC: 4961147.
DOI: 10.1073/pnas.1524578113.
Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.
Yoshida M, Ogura A, Ikeo K, Shigeno S, Moritaki T, Winters G
Integr Comp Biol. 2015; 55(6):1070-83.
PMID: 26002349
PMC: 4652037.
DOI: 10.1093/icb/icv049.
Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides.
Ramirez M, Oakley T
J Exp Biol. 2015; 218(Pt 10):1513-20.
PMID: 25994633
PMC: 4448664.
DOI: 10.1242/jeb.110908.
Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry.
Akkaynak D, Allen J, Mathger L, Chiao C, Hanlon R
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012; 199(3):211-25.
PMID: 23254307
DOI: 10.1007/s00359-012-0785-3.
Neural control of tuneable skin iridescence in squid.
Wardill T, Gonzalez-Bellido P, Crook R, Hanlon R
Proc Biol Sci. 2012; 279(1745):4243-52.
PMID: 22896651
PMC: 3441077.
DOI: 10.1098/rspb.2012.1374.
Camouflaging in a complex environment--octopuses use specific features of their surroundings for background matching.
Josef N, Amodio P, Fiorito G, Shashar N
PLoS One. 2012; 7(5):e37579.
PMID: 22649542
PMC: 3359305.
DOI: 10.1371/journal.pone.0037579.
Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators.
Chiao C, Wickiser J, Allen J, Genter B, Hanlon R
Proc Natl Acad Sci U S A. 2011; 108(22):9148-53.
PMID: 21576487
PMC: 3107294.
DOI: 10.1073/pnas.1019090108.
Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.
Mathger L, Roberts S, Hanlon R
Biol Lett. 2010; 6(5):600-3.
PMID: 20392722
PMC: 2936158.
DOI: 10.1098/rsbl.2010.0223.
Visual pigment in the lens eyes of the box jellyfish Chiropsella bronzie.
OConnor M, Garm A, Marshall J, Hart N, Ekstrom P, Skogh C
Proc Biol Sci. 2010; 277(1689):1843-8.
PMID: 20147327
PMC: 2871879.
DOI: 10.1098/rspb.2009.2248.
Mechanisms and behavioural functions of structural coloration in cephalopods.
Mathger L, Denton E, Marshall N, Hanlon R
J R Soc Interface. 2008; 6 Suppl 2:S149-63.
PMID: 19091688
PMC: 2706477.
DOI: 10.1098/rsif.2008.0366.focus.
Color matching on natural substrates in cuttlefish, Sepia officinalis.
Mathger L, Chiao C, Barbosa A, Hanlon R
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008; 194(6):577-85.
PMID: 18414874
DOI: 10.1007/s00359-008-0332-4.